Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rossros Structured version   Visualization version   GIF version

Theorem rossros 30042
Description: Rings of sets are semi-rings of sets. (Contributed by Thierry Arnoux, 18-Jul-2020.)
Hypotheses
Ref Expression
rossros.q 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
rossros.n 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))}
Assertion
Ref Expression
rossros (𝑆𝑄𝑆𝑁)
Distinct variable groups:   𝑂,𝑠   𝑥,𝑄,𝑦   𝑆,𝑠,𝑥,𝑦,𝑧   𝑡,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑄(𝑧,𝑡,𝑠)   𝑆(𝑡)   𝑁(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡)

Proof of Theorem rossros
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rossros.q . . . . 5 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
21rossspw 30031 . . . 4 (𝑆𝑄𝑆 ⊆ 𝒫 𝑂)
3 elpwg 4143 . . . 4 (𝑆𝑄 → (𝑆 ∈ 𝒫 𝒫 𝑂𝑆 ⊆ 𝒫 𝑂))
42, 3mpbird 247 . . 3 (𝑆𝑄𝑆 ∈ 𝒫 𝒫 𝑂)
510elros 30032 . . 3 (𝑆𝑄 → ∅ ∈ 𝑆)
6 uneq1 3743 . . . . . . . . . . . . . 14 (𝑢 = 𝑥 → (𝑢𝑣) = (𝑥𝑣))
76eleq1d 2683 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → ((𝑢𝑣) ∈ 𝑠 ↔ (𝑥𝑣) ∈ 𝑠))
8 difeq1 3704 . . . . . . . . . . . . . 14 (𝑢 = 𝑥 → (𝑢𝑣) = (𝑥𝑣))
98eleq1d 2683 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → ((𝑢𝑣) ∈ 𝑠 ↔ (𝑥𝑣) ∈ 𝑠))
107, 9anbi12d 746 . . . . . . . . . . . 12 (𝑢 = 𝑥 → (((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠) ↔ ((𝑥𝑣) ∈ 𝑠 ∧ (𝑥𝑣) ∈ 𝑠)))
11 uneq2 3744 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → (𝑥𝑣) = (𝑥𝑦))
1211eleq1d 2683 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → ((𝑥𝑣) ∈ 𝑠 ↔ (𝑥𝑦) ∈ 𝑠))
13 difeq2 3705 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → (𝑥𝑣) = (𝑥𝑦))
1413eleq1d 2683 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → ((𝑥𝑣) ∈ 𝑠 ↔ (𝑥𝑦) ∈ 𝑠))
1512, 14anbi12d 746 . . . . . . . . . . . 12 (𝑣 = 𝑦 → (((𝑥𝑣) ∈ 𝑠 ∧ (𝑥𝑣) ∈ 𝑠) ↔ ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠)))
1610, 15cbvral2v 3170 . . . . . . . . . . 11 (∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠) ↔ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))
1716anbi2i 729 . . . . . . . . . 10 ((∅ ∈ 𝑠 ∧ ∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠)) ↔ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠)))
1817a1i 11 . . . . . . . . 9 (𝑠 ∈ 𝒫 𝒫 𝑂 → ((∅ ∈ 𝑠 ∧ ∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠)) ↔ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))))
1918rabbiia 3176 . . . . . . . 8 {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠))} = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
201, 19eqtr4i 2646 . . . . . . 7 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠))}
2120inelros 30035 . . . . . 6 ((𝑆𝑄𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
22213expb 1263 . . . . 5 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑦) ∈ 𝑆)
2320difelros 30034 . . . . . . . . 9 ((𝑆𝑄𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
24233expb 1263 . . . . . . . 8 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑦) ∈ 𝑆)
2524snssd 4314 . . . . . . 7 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} ⊆ 𝑆)
26 snex 4874 . . . . . . . 8 {(𝑥𝑦)} ∈ V
2726elpw 4141 . . . . . . 7 ({(𝑥𝑦)} ∈ 𝒫 𝑆 ↔ {(𝑥𝑦)} ⊆ 𝑆)
2825, 27sylibr 224 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} ∈ 𝒫 𝑆)
29 snfi 7989 . . . . . . 7 {(𝑥𝑦)} ∈ Fin
3029a1i 11 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} ∈ Fin)
31 disjxsn 4611 . . . . . . 7 Disj 𝑡 ∈ {(𝑥𝑦)}𝑡
3231a1i 11 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → Disj 𝑡 ∈ {(𝑥𝑦)}𝑡)
33 unisng 4423 . . . . . . . 8 ((𝑥𝑦) ∈ 𝑆 {(𝑥𝑦)} = (𝑥𝑦))
3424, 33syl 17 . . . . . . 7 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} = (𝑥𝑦))
3534eqcomd 2627 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑦) = {(𝑥𝑦)})
36 eleq1 2686 . . . . . . . 8 (𝑧 = {(𝑥𝑦)} → (𝑧 ∈ Fin ↔ {(𝑥𝑦)} ∈ Fin))
37 disjeq1 4595 . . . . . . . 8 (𝑧 = {(𝑥𝑦)} → (Disj 𝑡𝑧 𝑡Disj 𝑡 ∈ {(𝑥𝑦)}𝑡))
38 unieq 4415 . . . . . . . . 9 (𝑧 = {(𝑥𝑦)} → 𝑧 = {(𝑥𝑦)})
3938eqeq2d 2631 . . . . . . . 8 (𝑧 = {(𝑥𝑦)} → ((𝑥𝑦) = 𝑧 ↔ (𝑥𝑦) = {(𝑥𝑦)}))
4036, 37, 393anbi123d 1396 . . . . . . 7 (𝑧 = {(𝑥𝑦)} → ((𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧) ↔ ({(𝑥𝑦)} ∈ Fin ∧ Disj 𝑡 ∈ {(𝑥𝑦)}𝑡 ∧ (𝑥𝑦) = {(𝑥𝑦)})))
4140rspcev 3298 . . . . . 6 (({(𝑥𝑦)} ∈ 𝒫 𝑆 ∧ ({(𝑥𝑦)} ∈ Fin ∧ Disj 𝑡 ∈ {(𝑥𝑦)}𝑡 ∧ (𝑥𝑦) = {(𝑥𝑦)})) → ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))
4228, 30, 32, 35, 41syl13anc 1325 . . . . 5 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))
4322, 42jca 554 . . . 4 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))
4443ralrimivva 2966 . . 3 (𝑆𝑄 → ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))
454, 5, 443jca 1240 . 2 (𝑆𝑄 → (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))))
46 rossros.n . . 3 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))}
4746issros 30037 . 2 (𝑆𝑁 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))))
4845, 47sylibr 224 1 (𝑆𝑄𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  {crab 2911  cdif 3556  cun 3557  cin 3558  wss 3559  c0 3896  𝒫 cpw 4135  {csn 4153   cuni 4407  Disj wdisj 4588  Fincfn 7906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-disj 4589  df-br 4619  df-opab 4679  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-om 7020  df-1o 7512  df-en 7907  df-fin 7910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator