Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rossros Structured version   Visualization version   GIF version

Theorem rossros 31441
Description: Rings of sets are semirings of sets. (Contributed by Thierry Arnoux, 18-Jul-2020.)
Hypotheses
Ref Expression
rossros.q 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
rossros.n 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))}
Assertion
Ref Expression
rossros (𝑆𝑄𝑆𝑁)
Distinct variable groups:   𝑂,𝑠   𝑥,𝑄,𝑦   𝑆,𝑠,𝑥,𝑦,𝑧   𝑡,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑄(𝑧,𝑡,𝑠)   𝑆(𝑡)   𝑁(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡)

Proof of Theorem rossros
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rossros.q . . . . 5 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
21rossspw 31430 . . . 4 (𝑆𝑄𝑆 ⊆ 𝒫 𝑂)
3 elpwg 4544 . . . 4 (𝑆𝑄 → (𝑆 ∈ 𝒫 𝒫 𝑂𝑆 ⊆ 𝒫 𝑂))
42, 3mpbird 259 . . 3 (𝑆𝑄𝑆 ∈ 𝒫 𝒫 𝑂)
510elros 31431 . . 3 (𝑆𝑄 → ∅ ∈ 𝑆)
6 uneq1 4134 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → (𝑢𝑣) = (𝑥𝑣))
76eleq1d 2899 . . . . . . . . . . . 12 (𝑢 = 𝑥 → ((𝑢𝑣) ∈ 𝑠 ↔ (𝑥𝑣) ∈ 𝑠))
8 difeq1 4094 . . . . . . . . . . . . 13 (𝑢 = 𝑥 → (𝑢𝑣) = (𝑥𝑣))
98eleq1d 2899 . . . . . . . . . . . 12 (𝑢 = 𝑥 → ((𝑢𝑣) ∈ 𝑠 ↔ (𝑥𝑣) ∈ 𝑠))
107, 9anbi12d 632 . . . . . . . . . . 11 (𝑢 = 𝑥 → (((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠) ↔ ((𝑥𝑣) ∈ 𝑠 ∧ (𝑥𝑣) ∈ 𝑠)))
11 uneq2 4135 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (𝑥𝑣) = (𝑥𝑦))
1211eleq1d 2899 . . . . . . . . . . . 12 (𝑣 = 𝑦 → ((𝑥𝑣) ∈ 𝑠 ↔ (𝑥𝑦) ∈ 𝑠))
13 difeq2 4095 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (𝑥𝑣) = (𝑥𝑦))
1413eleq1d 2899 . . . . . . . . . . . 12 (𝑣 = 𝑦 → ((𝑥𝑣) ∈ 𝑠 ↔ (𝑥𝑦) ∈ 𝑠))
1512, 14anbi12d 632 . . . . . . . . . . 11 (𝑣 = 𝑦 → (((𝑥𝑣) ∈ 𝑠 ∧ (𝑥𝑣) ∈ 𝑠) ↔ ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠)))
1610, 15cbvral2vw 3463 . . . . . . . . . 10 (∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠) ↔ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))
1716anbi2i 624 . . . . . . . . 9 ((∅ ∈ 𝑠 ∧ ∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠)) ↔ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠)))
1817rabbii 3475 . . . . . . . 8 {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠))} = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
191, 18eqtr4i 2849 . . . . . . 7 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑢𝑠𝑣𝑠 ((𝑢𝑣) ∈ 𝑠 ∧ (𝑢𝑣) ∈ 𝑠))}
2019inelros 31434 . . . . . 6 ((𝑆𝑄𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
21203expb 1116 . . . . 5 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑦) ∈ 𝑆)
2219difelros 31433 . . . . . . . . 9 ((𝑆𝑄𝑥𝑆𝑦𝑆) → (𝑥𝑦) ∈ 𝑆)
23223expb 1116 . . . . . . . 8 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑦) ∈ 𝑆)
2423snssd 4744 . . . . . . 7 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} ⊆ 𝑆)
25 snex 5334 . . . . . . . 8 {(𝑥𝑦)} ∈ V
2625elpw 4545 . . . . . . 7 ({(𝑥𝑦)} ∈ 𝒫 𝑆 ↔ {(𝑥𝑦)} ⊆ 𝑆)
2724, 26sylibr 236 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} ∈ 𝒫 𝑆)
28 snfi 8596 . . . . . . 7 {(𝑥𝑦)} ∈ Fin
2928a1i 11 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} ∈ Fin)
30 disjxsn 5061 . . . . . . 7 Disj 𝑡 ∈ {(𝑥𝑦)}𝑡
3130a1i 11 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → Disj 𝑡 ∈ {(𝑥𝑦)}𝑡)
32 unisng 4859 . . . . . . . 8 ((𝑥𝑦) ∈ 𝑆 {(𝑥𝑦)} = (𝑥𝑦))
3323, 32syl 17 . . . . . . 7 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → {(𝑥𝑦)} = (𝑥𝑦))
3433eqcomd 2829 . . . . . 6 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑦) = {(𝑥𝑦)})
35 eleq1 2902 . . . . . . . 8 (𝑧 = {(𝑥𝑦)} → (𝑧 ∈ Fin ↔ {(𝑥𝑦)} ∈ Fin))
36 disjeq1 5040 . . . . . . . 8 (𝑧 = {(𝑥𝑦)} → (Disj 𝑡𝑧 𝑡Disj 𝑡 ∈ {(𝑥𝑦)}𝑡))
37 unieq 4851 . . . . . . . . 9 (𝑧 = {(𝑥𝑦)} → 𝑧 = {(𝑥𝑦)})
3837eqeq2d 2834 . . . . . . . 8 (𝑧 = {(𝑥𝑦)} → ((𝑥𝑦) = 𝑧 ↔ (𝑥𝑦) = {(𝑥𝑦)}))
3935, 36, 383anbi123d 1432 . . . . . . 7 (𝑧 = {(𝑥𝑦)} → ((𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧) ↔ ({(𝑥𝑦)} ∈ Fin ∧ Disj 𝑡 ∈ {(𝑥𝑦)}𝑡 ∧ (𝑥𝑦) = {(𝑥𝑦)})))
4039rspcev 3625 . . . . . 6 (({(𝑥𝑦)} ∈ 𝒫 𝑆 ∧ ({(𝑥𝑦)} ∈ Fin ∧ Disj 𝑡 ∈ {(𝑥𝑦)}𝑡 ∧ (𝑥𝑦) = {(𝑥𝑦)})) → ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))
4127, 29, 31, 34, 40syl13anc 1368 . . . . 5 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))
4221, 41jca 514 . . . 4 ((𝑆𝑄 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))
4342ralrimivva 3193 . . 3 (𝑆𝑄 → ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))
444, 5, 433jca 1124 . 2 (𝑆𝑄 → (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))))
45 rossros.n . . 3 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))}
4645issros 31436 . 2 (𝑆𝑁 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))))
4744, 46sylibr 236 1 (𝑆𝑄𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  {crab 3144  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   cuni 4840  Disj wdisj 5033  Fincfn 8511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-disj 5034  df-br 5069  df-opab 5131  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-om 7583  df-1o 8104  df-en 8512  df-fin 8515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator