MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1l2 Structured version   Visualization version   GIF version

Theorem simp1l2 1349
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1l2 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜓)

Proof of Theorem simp1l2
StepHypRef Expression
1 simpl2 1227 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
213ad2ant1 1127 1 ((((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜏𝜂) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1074
This theorem is referenced by:  mapxpen  8283  lsmcv  19335  pmatcollpw2  20777  btwnconn1lem4  32495  linethru  32558  hlrelat3  35193  cvrval3  35194  cvrval4N  35195  2atlt  35220  atbtwnex  35229  1cvratlt  35255  atcvrlln2  35300  atcvrlln  35301  2llnmat  35305  lvolnlelpln  35366  lnjatN  35561  lncmp  35564  cdlemd9  35988  dihord5b  37042  dihmeetALTN  37110  mapdrvallem2  37428
  Copyright terms: Public domain W3C validator