Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atbtwnex Structured version   Visualization version   GIF version

Theorem atbtwnex 35255
Description: Given atoms 𝑃 in 𝑋 and 𝑄 not in 𝑋, there exists an atom 𝑟 not in 𝑋 such that the line 𝑄 𝑟 intersects 𝑋 at 𝑃. (Contributed by NM, 1-Aug-2012.)
Hypotheses
Ref Expression
atbtwn.b 𝐵 = (Base‘𝐾)
atbtwn.l = (le‘𝐾)
atbtwn.j = (join‘𝐾)
atbtwn.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atbtwnex (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴 (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 (𝑄 𝑟)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑋,𝑟
Allowed substitution hint:   (𝑟)

Proof of Theorem atbtwnex
StepHypRef Expression
1 simpr2 1236 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃 𝑋)
2 simpr3 1238 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ¬ 𝑄 𝑋)
3 nbrne2 4824 . . . 4 ((𝑃 𝑋 ∧ ¬ 𝑄 𝑋) → 𝑃𝑄)
41, 2, 3syl2anc 696 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → 𝑃𝑄)
5 atbtwn.l . . . 4 = (le‘𝐾)
6 atbtwn.j . . . 4 = (join‘𝐾)
7 atbtwn.a . . . 4 𝐴 = (Atoms‘𝐾)
85, 6, 7hlsupr 35193 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
94, 8syldan 488 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)))
10 simp32 1253 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟𝑄)
11 simp31 1252 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟𝑃)
12 simp1l 1240 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
13 simp2 1132 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟𝐴)
14 simp1r1 1354 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑋𝐵)
15 simp1r2 1355 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑃 𝑋)
16 simp1r3 1356 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → ¬ 𝑄 𝑋)
17 simp33 1254 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑟 (𝑃 𝑄))
18 atbtwn.b . . . . . . . 8 𝐵 = (Base‘𝐾)
1918, 5, 6, 7atbtwn 35253 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑟𝐴𝑋𝐵) ∧ (𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑟 (𝑃 𝑄))) → (𝑟𝑃 ↔ ¬ 𝑟 𝑋))
2012, 13, 14, 15, 16, 17, 19syl123anc 1494 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝑟𝑃 ↔ ¬ 𝑟 𝑋))
2111, 20mpbid 222 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → ¬ 𝑟 𝑋)
22 simp1l1 1351 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝐾 ∈ HL)
23 simp1l2 1352 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑃𝐴)
24 simp1l3 1353 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑄𝐴)
255, 6, 7hlatexch2 35203 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑃𝐴𝑄𝐴) ∧ 𝑟𝑄) → (𝑟 (𝑃 𝑄) → 𝑃 (𝑟 𝑄)))
2622, 13, 23, 24, 10, 25syl131anc 1490 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝑟 (𝑃 𝑄) → 𝑃 (𝑟 𝑄)))
2717, 26mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑃 (𝑟 𝑄))
286, 7hlatjcom 35175 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑟𝐴) → (𝑄 𝑟) = (𝑟 𝑄))
2922, 24, 13, 28syl3anc 1477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝑄 𝑟) = (𝑟 𝑄))
3027, 29breqtrrd 4832 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → 𝑃 (𝑄 𝑟))
3110, 21, 303jca 1123 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) ∧ 𝑟𝐴 ∧ (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄))) → (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 (𝑄 𝑟)))
32313exp 1113 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (𝑟𝐴 → ((𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)) → (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 (𝑄 𝑟)))))
3332reximdvai 3153 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → (∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄)) → ∃𝑟𝐴 (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 (𝑄 𝑟))))
349, 33mpd 15 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋)) → ∃𝑟𝐴 (𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 (𝑄 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wrex 3051   class class class wbr 4804  cfv 6049  (class class class)co 6814  Basecbs 16079  lecple 16170  joincjn 17165  Atomscatm 35071  HLchlt 35158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159
This theorem is referenced by:  dalem19  35489
  Copyright terms: Public domain W3C validator