Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssonprc Structured version   Visualization version   GIF version

Theorem ssonprc 6977
 Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
ssonprc (𝐴 ⊆ On → (𝐴 ∉ V ↔ 𝐴 = On))

Proof of Theorem ssonprc
StepHypRef Expression
1 df-nel 2895 . 2 (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V)
2 ssorduni 6970 . . . . . . . 8 (𝐴 ⊆ On → Ord 𝐴)
3 ordeleqon 6973 . . . . . . . 8 (Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On))
42, 3sylib 208 . . . . . . 7 (𝐴 ⊆ On → ( 𝐴 ∈ On ∨ 𝐴 = On))
54orcomd 403 . . . . . 6 (𝐴 ⊆ On → ( 𝐴 = On ∨ 𝐴 ∈ On))
65ord 392 . . . . 5 (𝐴 ⊆ On → (¬ 𝐴 = On → 𝐴 ∈ On))
7 uniexr 6957 . . . . 5 ( 𝐴 ∈ On → 𝐴 ∈ V)
86, 7syl6 35 . . . 4 (𝐴 ⊆ On → (¬ 𝐴 = On → 𝐴 ∈ V))
98con1d 139 . . 3 (𝐴 ⊆ On → (¬ 𝐴 ∈ V → 𝐴 = On))
10 onprc 6969 . . . 4 ¬ On ∈ V
11 uniexg 6940 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ V)
12 eleq1 2687 . . . . 5 ( 𝐴 = On → ( 𝐴 ∈ V ↔ On ∈ V))
1311, 12syl5ib 234 . . . 4 ( 𝐴 = On → (𝐴 ∈ V → On ∈ V))
1410, 13mtoi 190 . . 3 ( 𝐴 = On → ¬ 𝐴 ∈ V)
159, 14impbid1 215 . 2 (𝐴 ⊆ On → (¬ 𝐴 ∈ V ↔ 𝐴 = On))
161, 15syl5bb 272 1 (𝐴 ⊆ On → (𝐴 ∉ V ↔ 𝐴 = On))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   = wceq 1481   ∈ wcel 1988   ∉ wnel 2894  Vcvv 3195   ⊆ wss 3567  ∪ cuni 4427  Ord word 5710  Oncon0 5711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-tr 4744  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-ord 5714  df-on 5715 This theorem is referenced by:  inaprc  9643
 Copyright terms: Public domain W3C validator