MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssonprc Structured version   Visualization version   GIF version

Theorem ssonprc 7507
Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
ssonprc (𝐴 ⊆ On → (𝐴 ∉ V ↔ 𝐴 = On))

Proof of Theorem ssonprc
StepHypRef Expression
1 df-nel 3124 . 2 (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V)
2 ssorduni 7500 . . . . . . . 8 (𝐴 ⊆ On → Ord 𝐴)
3 ordeleqon 7503 . . . . . . . 8 (Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On))
42, 3sylib 220 . . . . . . 7 (𝐴 ⊆ On → ( 𝐴 ∈ On ∨ 𝐴 = On))
54orcomd 867 . . . . . 6 (𝐴 ⊆ On → ( 𝐴 = On ∨ 𝐴 ∈ On))
65ord 860 . . . . 5 (𝐴 ⊆ On → (¬ 𝐴 = On → 𝐴 ∈ On))
7 uniexr 7485 . . . . 5 ( 𝐴 ∈ On → 𝐴 ∈ V)
86, 7syl6 35 . . . 4 (𝐴 ⊆ On → (¬ 𝐴 = On → 𝐴 ∈ V))
98con1d 147 . . 3 (𝐴 ⊆ On → (¬ 𝐴 ∈ V → 𝐴 = On))
10 onprc 7499 . . . 4 ¬ On ∈ V
11 uniexg 7466 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ V)
12 eleq1 2900 . . . . 5 ( 𝐴 = On → ( 𝐴 ∈ V ↔ On ∈ V))
1311, 12syl5ib 246 . . . 4 ( 𝐴 = On → (𝐴 ∈ V → On ∈ V))
1410, 13mtoi 201 . . 3 ( 𝐴 = On → ¬ 𝐴 ∈ V)
159, 14impbid1 227 . 2 (𝐴 ⊆ On → (¬ 𝐴 ∈ V ↔ 𝐴 = On))
161, 15syl5bb 285 1 (𝐴 ⊆ On → (𝐴 ∉ V ↔ 𝐴 = On))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wo 843   = wceq 1537  wcel 2114  wnel 3123  Vcvv 3494  wss 3936   cuni 4838  Ord word 6190  Oncon0 6191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-ord 6194  df-on 6195
This theorem is referenced by:  inaprc  10258
  Copyright terms: Public domain W3C validator