| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onprc | Structured version Visualization version GIF version | ||
| Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 7753), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| onprc | ⊢ ¬ On ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon 7753 | . . 3 ⊢ Ord On | |
| 2 | ordirr 6350 | . . 3 ⊢ (Ord On → ¬ On ∈ On) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ¬ On ∈ On |
| 4 | elong 6340 | . . 3 ⊢ (On ∈ V → (On ∈ On ↔ Ord On)) | |
| 5 | 1, 4 | mpbiri 258 | . 2 ⊢ (On ∈ V → On ∈ On) |
| 6 | 3, 5 | mto 197 | 1 ⊢ ¬ On ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 Vcvv 3447 Ord word 6331 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: ordeleqon 7758 ssonprc 7763 sucon 7779 orduninsuc 7819 omelon2 7855 tfr2b 8364 tz7.48-3 8412 infensuc 9119 zorn2lem4 10452 noprc 27691 onvf1od 35094 |
| Copyright terms: Public domain | W3C validator |