MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrel Structured version   Visualization version   GIF version

Theorem ssrel 5657
Description: A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Remove dependency on ax-sep 5203, ax-nul 5210, ax-pr 5330. (Revised by KP, 25-Oct-2021.)
Assertion
Ref Expression
ssrel (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem ssrel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssel 3961 . . 3 (𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
21alrimivv 1929 . 2 (𝐴𝐵 → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
3 df-rel 5562 . . . . . . 7 (Rel 𝐴𝐴 ⊆ (V × V))
4 dfss2 3955 . . . . . . 7 (𝐴 ⊆ (V × V) ↔ ∀𝑧(𝑧𝐴𝑧 ∈ (V × V)))
53, 4sylbb 221 . . . . . 6 (Rel 𝐴 → ∀𝑧(𝑧𝐴𝑧 ∈ (V × V)))
6 df-xp 5561 . . . . . . . . . 10 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
7 df-opab 5129 . . . . . . . . . 10 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
86, 7eqtri 2844 . . . . . . . . 9 (V × V) = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
98abeq2i 2948 . . . . . . . 8 (𝑧 ∈ (V × V) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
10 simpl 485 . . . . . . . . 9 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → 𝑧 = ⟨𝑥, 𝑦⟩)
11102eximi 1836 . . . . . . . 8 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
129, 11sylbi 219 . . . . . . 7 (𝑧 ∈ (V × V) → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
1312imim2i 16 . . . . . 6 ((𝑧𝐴𝑧 ∈ (V × V)) → (𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩))
145, 13sylg 1823 . . . . 5 (Rel 𝐴 → ∀𝑧(𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩))
15 eleq1 2900 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
16 eleq1 2900 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐵 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
1715, 16imbi12d 347 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑧𝐴𝑧𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
1817biimprcd 252 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
19182alimi 1813 . . . . . . . . 9 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → ∀𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
20 19.23vv 1944 . . . . . . . . 9 (∀𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)) ↔ (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
2119, 20sylib 220 . . . . . . . 8 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝐴𝑧𝐵)))
2221com23 86 . . . . . . 7 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (𝑧𝐴 → (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧𝐵)))
2322a2d 29 . . . . . 6 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → ((𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩) → (𝑧𝐴𝑧𝐵)))
2423alimdv 1917 . . . . 5 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (∀𝑧(𝑧𝐴 → ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩) → ∀𝑧(𝑧𝐴𝑧𝐵)))
2514, 24syl5 34 . . . 4 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (Rel 𝐴 → ∀𝑧(𝑧𝐴𝑧𝐵)))
26 dfss2 3955 . . . 4 (𝐴𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2725, 26syl6ibr 254 . . 3 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (Rel 𝐴𝐴𝐵))
2827com12 32 . 2 (Rel 𝐴 → (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) → 𝐴𝐵))
292, 28impbid2 228 1 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wex 1780  wcel 2114  {cab 2799  Vcvv 3494  wss 3936  cop 4573  {copab 5128   × cxp 5553  Rel wrel 5560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-in 3943  df-ss 3952  df-opab 5129  df-xp 5561  df-rel 5562
This theorem is referenced by:  eqrel  5658  relssi  5660  relssdv  5661  cotrg  5971  cnvsym  5974  intasym  5975  intirr  5978  codir  5980  qfto  5981  dfso2  32990  dfpo2  32991  dffun10  33375  imagesset  33414  ssrel3  35571  undmrnresiss  39984  cnvssco  39986
  Copyright terms: Public domain W3C validator