Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem8 Structured version   Visualization version   GIF version

Theorem stoweidlem8 39988
Description: Lemma for stoweid 40043: two class variables replace two setvar variables, for the sum of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem8.1 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem8.2 𝑡𝐹
stoweidlem8.3 𝑡𝐺
Assertion
Ref Expression
stoweidlem8 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑡   𝐴,𝑓,𝑔   𝑓,𝐹,𝑔   𝑇,𝑓,𝑔   𝜑,𝑓,𝑔   𝑔,𝐺
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝑇(𝑡)   𝐹(𝑡)   𝐺(𝑡,𝑓)

Proof of Theorem stoweidlem8
StepHypRef Expression
1 simp3 1061 . 2 ((𝜑𝐹𝐴𝐺𝐴) → 𝐺𝐴)
2 eleq1 2687 . . . . 5 (𝑔 = 𝐺 → (𝑔𝐴𝐺𝐴))
323anbi3d 1403 . . . 4 (𝑔 = 𝐺 → ((𝜑𝐹𝐴𝑔𝐴) ↔ (𝜑𝐹𝐴𝐺𝐴)))
4 stoweidlem8.3 . . . . . . 7 𝑡𝐺
54nfeq2 2777 . . . . . 6 𝑡 𝑔 = 𝐺
6 fveq1 6177 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔𝑡) = (𝐺𝑡))
76oveq2d 6651 . . . . . . 7 (𝑔 = 𝐺 → ((𝐹𝑡) + (𝑔𝑡)) = ((𝐹𝑡) + (𝐺𝑡)))
87adantr 481 . . . . . 6 ((𝑔 = 𝐺𝑡𝑇) → ((𝐹𝑡) + (𝑔𝑡)) = ((𝐹𝑡) + (𝐺𝑡)))
95, 8mpteq2da 4734 . . . . 5 (𝑔 = 𝐺 → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))))
109eleq1d 2684 . . . 4 (𝑔 = 𝐺 → ((𝑡𝑇 ↦ ((𝐹𝑡) + (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))) ∈ 𝐴))
113, 10imbi12d 334 . . 3 (𝑔 = 𝐺 → (((𝜑𝐹𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))) ∈ 𝐴)))
12 simp2 1060 . . . 4 ((𝜑𝐹𝐴𝑔𝐴) → 𝐹𝐴)
13 eleq1 2687 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝐴𝐹𝐴))
14133anbi2d 1402 . . . . . 6 (𝑓 = 𝐹 → ((𝜑𝑓𝐴𝑔𝐴) ↔ (𝜑𝐹𝐴𝑔𝐴)))
15 stoweidlem8.2 . . . . . . . . 9 𝑡𝐹
1615nfeq2 2777 . . . . . . . 8 𝑡 𝑓 = 𝐹
17 fveq1 6177 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑡) = (𝐹𝑡))
1817oveq1d 6650 . . . . . . . . 9 (𝑓 = 𝐹 → ((𝑓𝑡) + (𝑔𝑡)) = ((𝐹𝑡) + (𝑔𝑡)))
1918adantr 481 . . . . . . . 8 ((𝑓 = 𝐹𝑡𝑇) → ((𝑓𝑡) + (𝑔𝑡)) = ((𝐹𝑡) + (𝑔𝑡)))
2016, 19mpteq2da 4734 . . . . . . 7 (𝑓 = 𝐹 → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) + (𝑔𝑡))))
2120eleq1d 2684 . . . . . 6 (𝑓 = 𝐹 → ((𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ ((𝐹𝑡) + (𝑔𝑡))) ∈ 𝐴))
2214, 21imbi12d 334 . . . . 5 (𝑓 = 𝐹 → (((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝐹𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝑔𝑡))) ∈ 𝐴)))
23 stoweidlem8.1 . . . . 5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
2422, 23vtoclg 3261 . . . 4 (𝐹𝐴 → ((𝜑𝐹𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝑔𝑡))) ∈ 𝐴))
2512, 24mpcom 38 . . 3 ((𝜑𝐹𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝑔𝑡))) ∈ 𝐴)
2611, 25vtoclg 3261 . 2 (𝐺𝐴 → ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))) ∈ 𝐴))
271, 26mpcom 38 1 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐺𝑡))) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1481  wcel 1988  wnfc 2749  cmpt 4720  cfv 5876  (class class class)co 6635   + caddc 9924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-iota 5839  df-fv 5884  df-ov 6638
This theorem is referenced by:  stoweidlem20  40000  stoweidlem21  40001  stoweidlem22  40002  stoweidlem23  40003
  Copyright terms: Public domain W3C validator