MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strndxid Structured version   Visualization version   GIF version

Theorem strndxid 15809
Description: The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.)
Hypotheses
Ref Expression
strndxid.s (𝜑𝑆𝑉)
strndxid.e 𝐸 = Slot 𝑁
strndxid.n 𝑁 ∈ ℕ
Assertion
Ref Expression
strndxid (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸𝑆))

Proof of Theorem strndxid
StepHypRef Expression
1 strndxid.e . . . 4 𝐸 = Slot 𝑁
2 strndxid.n . . . 4 𝑁 ∈ ℕ
31, 2ndxid 15808 . . 3 𝐸 = Slot (𝐸‘ndx)
4 strndxid.s . . 3 (𝜑𝑆𝑉)
53, 4strfvnd 15802 . 2 (𝜑 → (𝐸𝑆) = (𝑆‘(𝐸‘ndx)))
65eqcomd 2627 1 (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  cfv 5849  cn 10967  ndxcnx 15781  Slot cslot 15783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-i2m1 9951  ax-1ne0 9952  ax-rrecex 9955  ax-cnre 9956
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-ov 6610  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-nn 10968  df-ndx 15787  df-slot 15788
This theorem is referenced by:  estrreslem1  16701  edgfndxid  25778  basvtxvalOLD  25810
  Copyright terms: Public domain W3C validator