Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subspopn Structured version   Visualization version   GIF version

Theorem subspopn 32608
Description: An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
subspopn (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴)) → 𝐵 ∈ (𝐽t 𝐴))

Proof of Theorem subspopn
StepHypRef Expression
1 elrestr 15794 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑉𝐵𝐽) → (𝐵𝐴) ∈ (𝐽t 𝐴))
2 df-ss 3458 . . . . 5 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
3 eleq1 2580 . . . . 5 ((𝐵𝐴) = 𝐵 → ((𝐵𝐴) ∈ (𝐽t 𝐴) ↔ 𝐵 ∈ (𝐽t 𝐴)))
42, 3sylbi 205 . . . 4 (𝐵𝐴 → ((𝐵𝐴) ∈ (𝐽t 𝐴) ↔ 𝐵 ∈ (𝐽t 𝐴)))
51, 4syl5ibcom 233 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉𝐵𝐽) → (𝐵𝐴𝐵 ∈ (𝐽t 𝐴)))
653expa 1256 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ 𝐵𝐽) → (𝐵𝐴𝐵 ∈ (𝐽t 𝐴)))
76impr 646 1 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴)) → 𝐵 ∈ (𝐽t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1938  cin 3443  wss 3444  (class class class)co 6425  t crest 15786  Topctop 20418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pr 4732  ax-un 6722
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-id 4847  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-rest 15788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator