Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nninfnub Structured version   Visualization version   GIF version

Theorem nninfnub 35041
Description: An infinite set of positive integers is unbounded above. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
nninfnub ((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nninfnub
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eq0 4308 . . . . . 6 ({𝑥𝐴𝐵 < 𝑥} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥})
2 breq2 5070 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐵 < 𝑥𝐵 < 𝑦))
32elrab 3680 . . . . . . . . . . 11 (𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} ↔ (𝑦𝐴𝐵 < 𝑦))
43notbii 322 . . . . . . . . . 10 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} ↔ ¬ (𝑦𝐴𝐵 < 𝑦))
5 imnan 402 . . . . . . . . . 10 ((𝑦𝐴 → ¬ 𝐵 < 𝑦) ↔ ¬ (𝑦𝐴𝐵 < 𝑦))
64, 5sylbb2 240 . . . . . . . . 9 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → (𝑦𝐴 → ¬ 𝐵 < 𝑦))
76alimi 1812 . . . . . . . 8 (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → ∀𝑦(𝑦𝐴 → ¬ 𝐵 < 𝑦))
8 df-ral 3143 . . . . . . . 8 (∀𝑦𝐴 ¬ 𝐵 < 𝑦 ↔ ∀𝑦(𝑦𝐴 → ¬ 𝐵 < 𝑦))
97, 8sylibr 236 . . . . . . 7 (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → ∀𝑦𝐴 ¬ 𝐵 < 𝑦)
10 ssel2 3962 . . . . . . . . . . . 12 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℕ)
1110nnred 11653 . . . . . . . . . . 11 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
1211adantlr 713 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
13 nnre 11645 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1413ad2antlr 725 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝐵 ∈ ℝ)
15 lenlt 10719 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦𝐵 ↔ ¬ 𝐵 < 𝑦))
1615biimprd 250 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵 < 𝑦𝑦𝐵))
1712, 14, 16syl2anc 586 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (¬ 𝐵 < 𝑦𝑦𝐵))
1817ralimdva 3177 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 ¬ 𝐵 < 𝑦 → ∀𝑦𝐴 𝑦𝐵))
19 fzfi 13341 . . . . . . . . . 10 (0...𝐵) ∈ Fin
2010nnnn0d 11956 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℕ ∧ 𝑦𝐴) → 𝑦 ∈ ℕ0)
2120adantlr 713 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → 𝑦 ∈ ℕ0)
2221adantr 483 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ℕ0)
23 nnnn0 11905 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
2423ad3antlr 729 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝐵 ∈ ℕ0)
25 simpr 487 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦𝐵)
2622, 24, 253jca 1124 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵))
2726ex 415 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (𝑦𝐵 → (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵)))
28 elfz2nn0 12999 . . . . . . . . . . . . . 14 (𝑦 ∈ (0...𝐵) ↔ (𝑦 ∈ ℕ0𝐵 ∈ ℕ0𝑦𝐵))
2927, 28syl6ibr 254 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑦𝐴) → (𝑦𝐵𝑦 ∈ (0...𝐵)))
3029ralimdva 3177 . . . . . . . . . . . 12 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 𝑦𝐵 → ∀𝑦𝐴 𝑦 ∈ (0...𝐵)))
3130imp 409 . . . . . . . . . . 11 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → ∀𝑦𝐴 𝑦 ∈ (0...𝐵))
32 dfss3 3956 . . . . . . . . . . 11 (𝐴 ⊆ (0...𝐵) ↔ ∀𝑦𝐴 𝑦 ∈ (0...𝐵))
3331, 32sylibr 236 . . . . . . . . . 10 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → 𝐴 ⊆ (0...𝐵))
34 ssfi 8738 . . . . . . . . . 10 (((0...𝐵) ∈ Fin ∧ 𝐴 ⊆ (0...𝐵)) → 𝐴 ∈ Fin)
3519, 33, 34sylancr 589 . . . . . . . . 9 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ∀𝑦𝐴 𝑦𝐵) → 𝐴 ∈ Fin)
3635ex 415 . . . . . . . 8 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 𝑦𝐵𝐴 ∈ Fin))
3718, 36syld 47 . . . . . . 7 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦𝐴 ¬ 𝐵 < 𝑦𝐴 ∈ Fin))
389, 37syl5 34 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑦 ¬ 𝑦 ∈ {𝑥𝐴𝐵 < 𝑥} → 𝐴 ∈ Fin))
391, 38syl5bi 244 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → ({𝑥𝐴𝐵 < 𝑥} = ∅ → 𝐴 ∈ Fin))
4039necon3bd 3030 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 𝐴 ∈ Fin → {𝑥𝐴𝐵 < 𝑥} ≠ ∅))
4140imp 409 . . 3 (((𝐴 ⊆ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ 𝐴 ∈ Fin) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
4241an32s 650 . 2 (((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
43423impa 1106 1 ((𝐴 ⊆ ℕ ∧ ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ ℕ) → {𝑥𝐴𝐵 < 𝑥} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wne 3016  wral 3138  {crab 3142  wss 3936  c0 4291   class class class wbr 5066  (class class class)co 7156  Fincfn 8509  cr 10536  0cc0 10537   < clt 10675  cle 10676  cn 11638  0cn0 11898  ...cfz 12893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator