MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufildr Structured version   Visualization version   GIF version

Theorem ufildr 22541
Description: An ultrafilter gives rise to a connected door topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
Hypothesis
Ref Expression
ufildr.1 𝐽 = (𝐹 ∪ {∅})
Assertion
Ref Expression
ufildr (𝐹 ∈ (UFil‘𝑋) → (𝐽 ∪ (Clsd‘𝐽)) = 𝒫 𝑋)

Proof of Theorem ufildr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elssuni 4870 . . . . . 6 (𝑥𝐽𝑥 𝐽)
2 ufildr.1 . . . . . . . . . 10 𝐽 = (𝐹 ∪ {∅})
32unieqi 4853 . . . . . . . . 9 𝐽 = (𝐹 ∪ {∅})
4 uniun 4863 . . . . . . . . . 10 (𝐹 ∪ {∅}) = ( 𝐹 {∅})
5 0ex 5213 . . . . . . . . . . . 12 ∅ ∈ V
65unisn 4860 . . . . . . . . . . 11 {∅} = ∅
76uneq2i 4138 . . . . . . . . . 10 ( 𝐹 {∅}) = ( 𝐹 ∪ ∅)
8 un0 4346 . . . . . . . . . 10 ( 𝐹 ∪ ∅) = 𝐹
94, 7, 83eqtri 2850 . . . . . . . . 9 (𝐹 ∪ {∅}) = 𝐹
103, 9eqtr2i 2847 . . . . . . . 8 𝐹 = 𝐽
11 ufilfil 22514 . . . . . . . . 9 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
12 filunibas 22491 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
1311, 12syl 17 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
1410, 13syl5reqr 2873 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝑋 = 𝐽)
1514sseq2d 4001 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → (𝑥𝑋𝑥 𝐽))
161, 15syl5ibr 248 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥𝐽𝑥𝑋))
17 eqid 2823 . . . . . . 7 𝐽 = 𝐽
1817cldss 21639 . . . . . 6 (𝑥 ∈ (Clsd‘𝐽) → 𝑥 𝐽)
1918, 15syl5ibr 248 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (Clsd‘𝐽) → 𝑥𝑋))
2016, 19jaod 855 . . . 4 (𝐹 ∈ (UFil‘𝑋) → ((𝑥𝐽𝑥 ∈ (Clsd‘𝐽)) → 𝑥𝑋))
21 ufilss 22515 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
22 ssun1 4150 . . . . . . . . . 10 𝐹 ⊆ (𝐹 ∪ {∅})
2322, 2sseqtrri 4006 . . . . . . . . 9 𝐹𝐽
2423a1i 11 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → 𝐹𝐽)
2524sseld 3968 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐹𝑥𝐽))
2624sseld 3968 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹 → (𝑋𝑥) ∈ 𝐽))
27 filconn 22493 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈ Conn)
28 conntop 22027 . . . . . . . . . . . 12 ((𝐹 ∪ {∅}) ∈ Conn → (𝐹 ∪ {∅}) ∈ Top)
2911, 27, 283syl 18 . . . . . . . . . . 11 (𝐹 ∈ (UFil‘𝑋) → (𝐹 ∪ {∅}) ∈ Top)
302, 29eqeltrid 2919 . . . . . . . . . 10 (𝐹 ∈ (UFil‘𝑋) → 𝐽 ∈ Top)
3115biimpa 479 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → 𝑥 𝐽)
3217iscld2 21638 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → (𝑥 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑥) ∈ 𝐽))
3330, 31, 32syl2an2r 683 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑥) ∈ 𝐽))
3414difeq1d 4100 . . . . . . . . . . 11 (𝐹 ∈ (UFil‘𝑋) → (𝑋𝑥) = ( 𝐽𝑥))
3534eleq1d 2899 . . . . . . . . . 10 (𝐹 ∈ (UFil‘𝑋) → ((𝑋𝑥) ∈ 𝐽 ↔ ( 𝐽𝑥) ∈ 𝐽))
3635adantr 483 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐽 ↔ ( 𝐽𝑥) ∈ 𝐽))
3733, 36bitr4d 284 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥 ∈ (Clsd‘𝐽) ↔ (𝑋𝑥) ∈ 𝐽))
3826, 37sylibrd 261 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹𝑥 ∈ (Clsd‘𝐽)))
3925, 38orim12d 961 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹) → (𝑥𝐽𝑥 ∈ (Clsd‘𝐽))))
4021, 39mpd 15 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (𝑥𝐽𝑥 ∈ (Clsd‘𝐽)))
4140ex 415 . . . 4 (𝐹 ∈ (UFil‘𝑋) → (𝑥𝑋 → (𝑥𝐽𝑥 ∈ (Clsd‘𝐽))))
4220, 41impbid 214 . . 3 (𝐹 ∈ (UFil‘𝑋) → ((𝑥𝐽𝑥 ∈ (Clsd‘𝐽)) ↔ 𝑥𝑋))
43 elun 4127 . . 3 (𝑥 ∈ (𝐽 ∪ (Clsd‘𝐽)) ↔ (𝑥𝐽𝑥 ∈ (Clsd‘𝐽)))
44 velpw 4546 . . 3 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
4542, 43, 443bitr4g 316 . 2 (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 ∪ (Clsd‘𝐽)) ↔ 𝑥 ∈ 𝒫 𝑋))
4645eqrdv 2821 1 (𝐹 ∈ (UFil‘𝑋) → (𝐽 ∪ (Clsd‘𝐽)) = 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  cdif 3935  cun 3936  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   cuni 4840  cfv 6357  Topctop 21503  Clsdccld 21626  Conncconn 22021  Filcfil 22455  UFilcufil 22509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365  df-fbas 20544  df-top 21504  df-cld 21629  df-conn 22022  df-fil 22456  df-ufil 22511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator