MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustfilxp Structured version   Visualization version   GIF version

Theorem ustfilxp 22750
Description: A uniform structure on a nonempty base is a filter. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
ustfilxp ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (Fil‘(𝑋 × 𝑋)))

Proof of Theorem ustfilxp
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6697 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
2 isust 22741 . . . . . . 7 (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
31, 2syl 17 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
43ibi 268 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
54adantl 482 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
65simp1d 1134 . . 3 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋))
75simp2d 1135 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑋 × 𝑋) ∈ 𝑈)
87ne0d 4300 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ≠ ∅)
95simp3d 1136 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))
109r19.21bi 3208 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))
1110simp3d 1136 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))
1211simp1d 1134 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ( I ↾ 𝑋) ⊆ 𝑣)
13 opelidres 5859 . . . . . . . . . . . . 13 (𝑤 ∈ V → (⟨𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋) ↔ 𝑤𝑋))
1413elv 3500 . . . . . . . . . . . 12 (⟨𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋) ↔ 𝑤𝑋)
1514biimpri 229 . . . . . . . . . . 11 (𝑤𝑋 → ⟨𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋))
1615rgen 3148 . . . . . . . . . 10 𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋)
17 r19.2z 4438 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ ∀𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋)) → ∃𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋))
1816, 17mpan2 687 . . . . . . . . 9 (𝑋 ≠ ∅ → ∃𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋))
1918ad2antrr 722 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ∃𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋))
20 ne0i 4299 . . . . . . . . 9 (⟨𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋) → ( I ↾ 𝑋) ≠ ∅)
2120rexlimivw 3282 . . . . . . . 8 (∃𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋) → ( I ↾ 𝑋) ≠ ∅)
2219, 21syl 17 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ( I ↾ 𝑋) ≠ ∅)
23 ssn0 4353 . . . . . . 7 ((( I ↾ 𝑋) ⊆ 𝑣 ∧ ( I ↾ 𝑋) ≠ ∅) → 𝑣 ≠ ∅)
2412, 22, 23syl2anc 584 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → 𝑣 ≠ ∅)
2524nelrdva 3695 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ¬ ∅ ∈ 𝑈)
26 df-nel 3124 . . . . 5 (∅ ∉ 𝑈 ↔ ¬ ∅ ∈ 𝑈)
2725, 26sylibr 235 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∅ ∉ 𝑈)
2810simp2d 1135 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈)
2928r19.21bi 3208 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤𝑈) → (𝑣𝑤) ∈ 𝑈)
30 vex 3498 . . . . . . . . . . 11 𝑤 ∈ V
3130inex2 5214 . . . . . . . . . 10 (𝑣𝑤) ∈ V
3231pwid 4556 . . . . . . . . 9 (𝑣𝑤) ∈ 𝒫 (𝑣𝑤)
3332a1i 11 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤𝑈) → (𝑣𝑤) ∈ 𝒫 (𝑣𝑤))
3429, 33elind 4170 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤𝑈) → (𝑣𝑤) ∈ (𝑈 ∩ 𝒫 (𝑣𝑤)))
3534ne0d 4300 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤𝑈) → (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
3635ralrimiva 3182 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ∀𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
3736ralrimiva 3182 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
388, 27, 373jca 1120 . . 3 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅))
391, 1xpexd 7462 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ V)
40 isfbas 22367 . . . . 5 ((𝑋 × 𝑋) ∈ V → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅))))
4139, 40syl 17 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅))))
4241adantl 482 . . 3 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅))))
436, 38, 42mpbir2and 709 . 2 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (fBas‘(𝑋 × 𝑋)))
44 n0 4309 . . . . 5 ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ (𝑈 ∩ 𝒫 𝑤))
45 elin 4168 . . . . . . 7 (𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ (𝑣𝑈𝑣 ∈ 𝒫 𝑤))
46 velpw 4545 . . . . . . . 8 (𝑣 ∈ 𝒫 𝑤𝑣𝑤)
4746anbi2i 622 . . . . . . 7 ((𝑣𝑈𝑣 ∈ 𝒫 𝑤) ↔ (𝑣𝑈𝑣𝑤))
4845, 47bitri 276 . . . . . 6 (𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ (𝑣𝑈𝑣𝑤))
4948exbii 1839 . . . . 5 (∃𝑣 𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ ∃𝑣(𝑣𝑈𝑣𝑤))
5044, 49bitri 276 . . . 4 ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ ↔ ∃𝑣(𝑣𝑈𝑣𝑤))
5110simp1d 1134 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈))
5251r19.21bi 3208 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (𝑣𝑤𝑤𝑈))
5352an32s 648 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑈) → (𝑣𝑤𝑤𝑈))
5453expimpd 454 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → ((𝑣𝑈𝑣𝑤) → 𝑤𝑈))
5554exlimdv 1925 . . . 4 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (∃𝑣(𝑣𝑈𝑣𝑤) → 𝑤𝑈))
5650, 55syl5bi 243 . . 3 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤𝑈))
5756ralrimiva 3182 . 2 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤𝑈))
58 isfil 22385 . 2 (𝑈 ∈ (Fil‘(𝑋 × 𝑋)) ↔ (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ∧ ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤𝑈)))
5943, 57, 58sylanbrc 583 1 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (Fil‘(𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079  wex 1771  wcel 2105  wne 3016  wnel 3123  wral 3138  wrex 3139  Vcvv 3495  cin 3934  wss 3935  c0 4290  𝒫 cpw 4537  cop 4565   I cid 5453   × cxp 5547  ccnv 5548  cres 5551  ccom 5553  cfv 6349  fBascfbas 20463  Filcfil 22383  UnifOncust 22737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fv 6357  df-fbas 20472  df-fil 22384  df-ust 22738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator