MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustfilxp Structured version   Visualization version   GIF version

Theorem ustfilxp 22821
Description: A uniform structure on a nonempty base is a filter. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
ustfilxp ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (Fil‘(𝑋 × 𝑋)))

Proof of Theorem ustfilxp
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6703 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
2 isust 22812 . . . . . . 7 (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
31, 2syl 17 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
43ibi 269 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
54adantl 484 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
65simp1d 1138 . . 3 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋))
75simp2d 1139 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑋 × 𝑋) ∈ 𝑈)
87ne0d 4301 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ≠ ∅)
95simp3d 1140 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))
109r19.21bi 3208 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))
1110simp3d 1140 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))
1211simp1d 1138 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ( I ↾ 𝑋) ⊆ 𝑣)
13 opelidres 5865 . . . . . . . . . . . . 13 (𝑤 ∈ V → (⟨𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋) ↔ 𝑤𝑋))
1413elv 3499 . . . . . . . . . . . 12 (⟨𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋) ↔ 𝑤𝑋)
1514biimpri 230 . . . . . . . . . . 11 (𝑤𝑋 → ⟨𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋))
1615rgen 3148 . . . . . . . . . 10 𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋)
17 r19.2z 4440 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ ∀𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋)) → ∃𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋))
1816, 17mpan2 689 . . . . . . . . 9 (𝑋 ≠ ∅ → ∃𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋))
1918ad2antrr 724 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ∃𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋))
20 ne0i 4300 . . . . . . . . 9 (⟨𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋) → ( I ↾ 𝑋) ≠ ∅)
2120rexlimivw 3282 . . . . . . . 8 (∃𝑤𝑋𝑤, 𝑤⟩ ∈ ( I ↾ 𝑋) → ( I ↾ 𝑋) ≠ ∅)
2219, 21syl 17 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ( I ↾ 𝑋) ≠ ∅)
23 ssn0 4354 . . . . . . 7 ((( I ↾ 𝑋) ⊆ 𝑣 ∧ ( I ↾ 𝑋) ≠ ∅) → 𝑣 ≠ ∅)
2412, 22, 23syl2anc 586 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → 𝑣 ≠ ∅)
2524nelrdva 3696 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ¬ ∅ ∈ 𝑈)
26 df-nel 3124 . . . . 5 (∅ ∉ 𝑈 ↔ ¬ ∅ ∈ 𝑈)
2725, 26sylibr 236 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∅ ∉ 𝑈)
2810simp2d 1139 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈)
2928r19.21bi 3208 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤𝑈) → (𝑣𝑤) ∈ 𝑈)
30 vex 3497 . . . . . . . . . . 11 𝑤 ∈ V
3130inex2 5222 . . . . . . . . . 10 (𝑣𝑤) ∈ V
3231pwid 4563 . . . . . . . . 9 (𝑣𝑤) ∈ 𝒫 (𝑣𝑤)
3332a1i 11 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤𝑈) → (𝑣𝑤) ∈ 𝒫 (𝑣𝑤))
3429, 33elind 4171 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤𝑈) → (𝑣𝑤) ∈ (𝑈 ∩ 𝒫 (𝑣𝑤)))
3534ne0d 4301 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤𝑈) → (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
3635ralrimiva 3182 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ∀𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
3736ralrimiva 3182 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
388, 27, 373jca 1124 . . 3 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅))
391, 1xpexd 7474 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ V)
40 isfbas 22437 . . . . 5 ((𝑋 × 𝑋) ∈ V → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅))))
4139, 40syl 17 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅))))
4241adantl 484 . . 3 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀𝑣𝑈𝑤𝑈 (𝑈 ∩ 𝒫 (𝑣𝑤)) ≠ ∅))))
436, 38, 42mpbir2and 711 . 2 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (fBas‘(𝑋 × 𝑋)))
44 n0 4310 . . . . 5 ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ (𝑈 ∩ 𝒫 𝑤))
45 elin 4169 . . . . . . 7 (𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ (𝑣𝑈𝑣 ∈ 𝒫 𝑤))
46 velpw 4544 . . . . . . . 8 (𝑣 ∈ 𝒫 𝑤𝑣𝑤)
4746anbi2i 624 . . . . . . 7 ((𝑣𝑈𝑣 ∈ 𝒫 𝑤) ↔ (𝑣𝑈𝑣𝑤))
4845, 47bitri 277 . . . . . 6 (𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ (𝑣𝑈𝑣𝑤))
4948exbii 1848 . . . . 5 (∃𝑣 𝑣 ∈ (𝑈 ∩ 𝒫 𝑤) ↔ ∃𝑣(𝑣𝑈𝑣𝑤))
5044, 49bitri 277 . . . 4 ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ ↔ ∃𝑣(𝑣𝑈𝑣𝑤))
5110simp1d 1138 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈))
5251r19.21bi 3208 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑣𝑈) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (𝑣𝑤𝑤𝑈))
5352an32s 650 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑈) → (𝑣𝑤𝑤𝑈))
5453expimpd 456 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → ((𝑣𝑈𝑣𝑤) → 𝑤𝑈))
5554exlimdv 1934 . . . 4 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (∃𝑣(𝑣𝑈𝑣𝑤) → 𝑤𝑈))
5650, 55syl5bi 244 . . 3 (((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → ((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤𝑈))
5756ralrimiva 3182 . 2 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤𝑈))
58 isfil 22455 . 2 (𝑈 ∈ (Fil‘(𝑋 × 𝑋)) ↔ (𝑈 ∈ (fBas‘(𝑋 × 𝑋)) ∧ ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)((𝑈 ∩ 𝒫 𝑤) ≠ ∅ → 𝑤𝑈)))
5943, 57, 58sylanbrc 585 1 ((𝑋 ≠ ∅ ∧ 𝑈 ∈ (UnifOn‘𝑋)) → 𝑈 ∈ (Fil‘(𝑋 × 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083  wex 1780  wcel 2114  wne 3016  wnel 3123  wral 3138  wrex 3139  Vcvv 3494  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  cop 4573   I cid 5459   × cxp 5553  ccnv 5554  cres 5557  ccom 5559  cfv 6355  fBascfbas 20533  Filcfil 22453  UnifOncust 22808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fv 6363  df-fbas 20542  df-fil 22454  df-ust 22809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator