MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzval Structured version   Visualization version   GIF version

Theorem uzval 11727
Description: The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzval (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
Distinct variable group:   𝑘,𝑁

Proof of Theorem uzval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 breq1 4688 . . 3 (𝑗 = 𝑁 → (𝑗𝑘𝑁𝑘))
21rabbidv 3220 . 2 (𝑗 = 𝑁 → {𝑘 ∈ ℤ ∣ 𝑗𝑘} = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
3 df-uz 11726 . 2 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
4 zex 11424 . . 3 ℤ ∈ V
54rabex 4845 . 2 {𝑘 ∈ ℤ ∣ 𝑁𝑘} ∈ V
62, 3, 5fvmpt 6321 1 (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  {crab 2945   class class class wbr 4685  cfv 5926  cle 10113  cz 11415  cuz 11725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-cnex 10030  ax-resscn 10031
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-neg 10307  df-z 11416  df-uz 11726
This theorem is referenced by:  eluz1  11729  nn0uz  11760  nnuz  11761  algfx  15340
  Copyright terms: Public domain W3C validator