MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzf Structured version   Visualization version   GIF version

Theorem uzf 11634
Description: The domain and range of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzf :ℤ⟶𝒫 ℤ

Proof of Theorem uzf
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3666 . . . 4 {𝑘 ∈ ℤ ∣ 𝑗𝑘} ⊆ ℤ
2 zex 11330 . . . . 5 ℤ ∈ V
32elpw2 4788 . . . 4 ({𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ ↔ {𝑘 ∈ ℤ ∣ 𝑗𝑘} ⊆ ℤ)
41, 3mpbir 221 . . 3 {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ
54rgenw 2919 . 2 𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ
6 df-uz 11632 . . 3 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
76fmpt 6337 . 2 (∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ ↔ ℤ:ℤ⟶𝒫 ℤ)
85, 7mpbi 220 1 :ℤ⟶𝒫 ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 1987  wral 2907  {crab 2911  wss 3555  𝒫 cpw 4130   class class class wbr 4613  wf 5843  cle 10019  cz 11321  cuz 11631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867  ax-cnex 9936  ax-resscn 9937
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855  df-ov 6607  df-neg 10213  df-z 11322  df-uz 11632
This theorem is referenced by:  eluzel2  11636  uzn0  11647  uzssz  11651  ltweuz  12700  uzin2  14018  rexanuz  14019  sumz  14386  sumss  14388  prod1  14599  prodss  14602  lmbr2  20973  lmff  21015  zfbas  21610  uzrest  21611  lmflf  21719  lmmbr2  22965  caucfil  22989  lmcau  23019  heibor1lem  33237  dmuz  38912
  Copyright terms: Public domain W3C validator