![]() |
Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HOLE Home > Th. List > cl | Unicode version |
Description: Evaluate a lambda expression. |
Ref | Expression |
---|---|
cl.1 |
![]() ![]() ![]() ![]() |
cl.2 |
![]() ![]() ![]() ![]() |
cl.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cl.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | cl.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | cl.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 3 | eqtypi 69 |
. . 3
![]() ![]() ![]() ![]() |
5 | wv 58 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | ax-17 95 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 5 | ax-17 95 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 2, 3, 6, 7 | clf 105 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: type var term |
Syntax hints: tv 1
kc 5 ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-hbl1 93 ax-17 95 ax-inst 103 |
This theorem depends on definitions: df-ov 65 |
This theorem is referenced by: ovl 107 alval 132 exval 133 euval 134 notval 135 cla4v 142 dfan2 144 cla4ev 159 exmid 186 axpow 208 |
Copyright terms: Public domain | W3C validator |