| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > cl | Unicode version | ||
| Description: Evaluate a lambda expression. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| cl.1 |
|
| cl.2 |
|
| cl.3 |
|
| Ref | Expression |
|---|---|
| cl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cl.1 |
. 2
| |
| 2 | cl.2 |
. 2
| |
| 3 | cl.3 |
. 2
| |
| 4 | 1, 3 | eqtypi 78 |
. . 3
|
| 5 | wv 64 |
. . 3
| |
| 6 | 4, 5 | ax-17 105 |
. 2
|
| 7 | 2, 5 | ax-17 105 |
. 2
|
| 8 | 1, 2, 3, 6, 7 | clf 115 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
kc 5 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 |
| This theorem is referenced by: ovl 117 alval 142 exval 143 euval 144 notval 145 cla4v 152 dfan2 154 cla4ev 169 exmid 199 axpow 221 |
| Copyright terms: Public domain | W3C validator |