| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > notval | Unicode version | ||
| Description: Value of negation. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| imval.1 |
|
| Ref | Expression |
|---|---|
| notval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wnot 138 |
. . 3
| |
| 2 | imval.1 |
. . 3
| |
| 3 | 1, 2 | wc 50 |
. 2
|
| 4 | df-not 130 |
. . 3
| |
| 5 | 1, 2, 4 | ceq1 89 |
. 2
|
| 6 | wim 137 |
. . . 4
| |
| 7 | wv 64 |
. . . 4
| |
| 8 | wfal 135 |
. . . 4
| |
| 9 | 6, 7, 8 | wov 72 |
. . 3
|
| 10 | 7, 2 | weqi 76 |
. . . . 5
|
| 11 | 10 | id 25 |
. . . 4
|
| 12 | 6, 7, 8, 11 | oveq1 99 |
. . 3
|
| 13 | 9, 2, 12 | cl 116 |
. 2
|
| 14 | 3, 5, 13 | eqtri 95 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 |
| This theorem is referenced by: notval2 159 notnot1 160 con2d 161 alnex 186 exmid 199 notnot 200 ax3 205 |
| Copyright terms: Public domain | W3C validator |