Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > hbct | GIF version |
Description: Hypothesis builder for context conjunction. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
hbct.1 | ⊢ A:∗ |
hbct.2 | ⊢ B:α |
hbct.3 | ⊢ C:∗ |
hbct.4 | ⊢ R⊧[(λx:α AB) = A] |
hbct.5 | ⊢ R⊧[(λx:α CB) = C] |
Ref | Expression |
---|---|
hbct | ⊢ R⊧[(λx:α (A, C)B) = (A, C)] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbct.4 | . . . 4 ⊢ R⊧[(λx:α AB) = A] | |
2 | 1 | ax-cb1 29 | . . 3 ⊢ R:∗ |
3 | 2 | trud 27 | . 2 ⊢ R⊧⊤ |
4 | hbct.1 | . . . 4 ⊢ A:∗ | |
5 | hbct.3 | . . . 4 ⊢ C:∗ | |
6 | 4, 5 | wct 48 | . . 3 ⊢ (A, C):∗ |
7 | hbct.2 | . . 3 ⊢ B:α | |
8 | wan 136 | . . . . 5 ⊢ ∧ :(∗ → (∗ → ∗)) | |
9 | 8, 4, 5 | wov 72 | . . . 4 ⊢ [A ∧ C]:∗ |
10 | 4, 5 | dfan2 154 | . . . 4 ⊢ ⊤⊧[[A ∧ C] = (A, C)] |
11 | 9, 10 | eqcomi 79 | . . 3 ⊢ ⊤⊧[(A, C) = [A ∧ C]] |
12 | 8, 7, 2 | a17i 106 | . . . . 5 ⊢ R⊧[(λx:α ∧ B) = ∧ ] |
13 | hbct.5 | . . . . 5 ⊢ R⊧[(λx:α CB) = C] | |
14 | 8, 4, 7, 5, 12, 1, 13 | hbov 111 | . . . 4 ⊢ R⊧[(λx:α [A ∧ C]B) = [A ∧ C]] |
15 | wtru 43 | . . . 4 ⊢ ⊤:∗ | |
16 | 14, 15 | adantr 55 | . . 3 ⊢ (R, ⊤)⊧[(λx:α [A ∧ C]B) = [A ∧ C]] |
17 | 6, 7, 11, 16 | hbxfrf 107 | . 2 ⊢ (R, ⊤)⊧[(λx:α (A, C)B) = (A, C)] |
18 | 3, 17 | mpdan 35 | 1 ⊢ R⊧[(λx:α (A, C)B) = (A, C)] |
Colors of variables: type var term |
Syntax hints: → ht 2 ∗hb 3 kc 5 λkl 6 = ke 7 ⊤kt 8 [kbr 9 kct 10 ⊧wffMMJ2 11 wffMMJ2t 12 ∧ tan 119 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-an 128 |
This theorem is referenced by: alimdv 184 ax5 207 |
Copyright terms: Public domain | W3C validator |