Step | Hyp | Ref
| Expression |
1 | | wv 64 |
. . . . . . 7
⊢ f:(∗ → (∗ →
∗)):(∗ → (∗ → ∗)) |
2 | | wv 64 |
. . . . . . 7
⊢ p:∗:∗ |
3 | | wv 64 |
. . . . . . 7
⊢ q:∗:∗ |
4 | 1, 2, 3 | wov 72 |
. . . . . 6
⊢ [p:∗f:(∗ → (∗ →
∗))q:∗]:∗ |
5 | 4 | wl 66 |
. . . . 5
⊢
λf:(∗ →
(∗ → ∗)) [p:∗f:(∗ → (∗ →
∗))q:∗]:((∗ →
(∗ → ∗)) → ∗) |
6 | | wtru 43 |
. . . . . . 7
⊢
⊤:∗ |
7 | 1, 6, 6 | wov 72 |
. . . . . 6
⊢ [⊤f:(∗ → (∗ →
∗))⊤]:∗ |
8 | 7 | wl 66 |
. . . . 5
⊢
λf:(∗ →
(∗ → ∗)) [⊤f:(∗ → (∗ →
∗))⊤]:((∗ → (∗ → ∗)) →
∗) |
9 | 5, 8 | weqi 76 |
. . . 4
⊢
[λf:(∗ →
(∗ → ∗)) [p:∗f:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]]:∗ |
10 | 9 | wl 66 |
. . 3
⊢
λq:∗
[λf:(∗ →
(∗ → ∗)) [p:∗f:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]]:(∗ →
∗) |
11 | 10 | wl 66 |
. 2
⊢
λp:∗
λq:∗
[λf:(∗ →
(∗ → ∗)) [p:∗f:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]]:(∗ → (∗ →
∗)) |
12 | | df-an 128 |
. 2
⊢ ⊤⊧[
∧ = λp:∗ λq:∗ [λf:(∗ → (∗ → ∗))
[p:∗f:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]]] |
13 | 11, 12 | eqtypri 81 |
1
⊢ ∧ :(∗ → (∗ →
∗)) |