| Step | Hyp | Ref
| Expression |
| 1 | | wv 64 |
. . . . . . 7
⊢ f:(∗ → (∗ →
∗)):(∗ → (∗ → ∗)) |
| 2 | | wv 64 |
. . . . . . 7
⊢ p:∗:∗ |
| 3 | | wv 64 |
. . . . . . 7
⊢ q:∗:∗ |
| 4 | 1, 2, 3 | wov 72 |
. . . . . 6
⊢ [p:∗f:(∗ → (∗ →
∗))q:∗]:∗ |
| 5 | 4 | wl 66 |
. . . . 5
⊢
λf:(∗ →
(∗ → ∗)) [p:∗f:(∗ → (∗ →
∗))q:∗]:((∗ →
(∗ → ∗)) → ∗) |
| 6 | | wtru 43 |
. . . . . . 7
⊢
⊤:∗ |
| 7 | 1, 6, 6 | wov 72 |
. . . . . 6
⊢ [⊤f:(∗ → (∗ →
∗))⊤]:∗ |
| 8 | 7 | wl 66 |
. . . . 5
⊢
λf:(∗ →
(∗ → ∗)) [⊤f:(∗ → (∗ →
∗))⊤]:((∗ → (∗ → ∗)) →
∗) |
| 9 | 5, 8 | weqi 76 |
. . . 4
⊢
[λf:(∗ →
(∗ → ∗)) [p:∗f:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]]:∗ |
| 10 | 9 | wl 66 |
. . 3
⊢
λq:∗
[λf:(∗ →
(∗ → ∗)) [p:∗f:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]]:(∗ →
∗) |
| 11 | 10 | wl 66 |
. 2
⊢
λp:∗
λq:∗
[λf:(∗ →
(∗ → ∗)) [p:∗f:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]]:(∗ → (∗ →
∗)) |
| 12 | | df-an 128 |
. 2
⊢ ⊤⊧[
∧ = λp:∗ λq:∗ [λf:(∗ → (∗ → ∗))
[p:∗f:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]]] |
| 13 | 11, 12 | eqtypri 81 |
1
⊢ ∧ :(∗ → (∗ →
∗)) |