| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > wfal | Unicode version | ||
| Description: Contradiction type. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| wfal |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wal 134 |
. . 3
| |
| 2 | wv 64 |
. . . 4
| |
| 3 | 2 | wl 66 |
. . 3
|
| 4 | 1, 3 | wc 50 |
. 2
|
| 5 | df-fal 127 |
. 2
| |
| 6 | 4, 5 | eqtypri 81 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-cb1 29 ax-weq 40 ax-refl 42 ax-wc 49 ax-wv 63 ax-wl 65 ax-wov 71 ax-eqtypri 80 |
| This theorem depends on definitions: df-al 126 df-fal 127 |
| This theorem is referenced by: wnot 138 notval 145 pm2.21 153 notval2 159 notnot1 160 con2d 161 alnex 186 exmid 199 notnot 200 ax3 205 |
| Copyright terms: Public domain | W3C validator |