Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > oveq | GIF version |
Description: Equality theorem for binary operation. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
oveq.1 | ⊢ F:(α → (β → γ)) |
oveq.2 | ⊢ A:α |
oveq.3 | ⊢ B:β |
oveq.4 | ⊢ R⊧[F = S] |
Ref | Expression |
---|---|
oveq | ⊢ R⊧[[AFB] = [ASB]] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq.1 | . 2 ⊢ F:(α → (β → γ)) | |
2 | oveq.2 | . 2 ⊢ A:α | |
3 | oveq.3 | . 2 ⊢ B:β | |
4 | oveq.4 | . 2 ⊢ R⊧[F = S] | |
5 | 4 | ax-cb1 29 | . . 3 ⊢ R:∗ |
6 | 5, 2 | eqid 83 | . 2 ⊢ R⊧[A = A] |
7 | 5, 3 | eqid 83 | . 2 ⊢ R⊧[B = B] |
8 | 1, 2, 3, 4, 6, 7 | oveq123 98 | 1 ⊢ R⊧[[AFB] = [ASB]] |
Colors of variables: type var term |
Syntax hints: → ht 2 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: imval 146 orval 147 anval 148 dfan2 154 |
Copyright terms: Public domain | W3C validator |