Step | Hyp | Ref
| Expression |
1 | | wan 136 |
. . 3
⊢ ∧ :(∗ → (∗ →
∗)) |
2 | | imval.1 |
. . 3
⊢ A:∗ |
3 | | imval.2 |
. . 3
⊢ B:∗ |
4 | 1, 2, 3 | wov 72 |
. 2
⊢ [A ∧ B]:∗ |
5 | | df-an 128 |
. . 3
⊢ ⊤⊧[
∧ = λp:∗ λq:∗ [λf:(∗ → (∗ → ∗))
[p:∗f:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]]] |
6 | 1, 2, 3, 5 | oveq 102 |
. 2
⊢
⊤⊧[[A ∧ B] = [Aλp:∗ λq:∗ [λf:(∗ → (∗ → ∗))
[p:∗f:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]]B]] |
7 | | wv 64 |
. . . . . 6
⊢ f:(∗ → (∗ →
∗)):(∗ → (∗ → ∗)) |
8 | | wv 64 |
. . . . . 6
⊢ p:∗:∗ |
9 | | wv 64 |
. . . . . 6
⊢ q:∗:∗ |
10 | 7, 8, 9 | wov 72 |
. . . . 5
⊢ [p:∗f:(∗ → (∗ →
∗))q:∗]:∗ |
11 | 10 | wl 66 |
. . . 4
⊢
λf:(∗ →
(∗ → ∗)) [p:∗f:(∗ → (∗ →
∗))q:∗]:((∗ →
(∗ → ∗)) → ∗) |
12 | | wtru 43 |
. . . . . 6
⊢
⊤:∗ |
13 | 7, 12, 12 | wov 72 |
. . . . 5
⊢ [⊤f:(∗ → (∗ →
∗))⊤]:∗ |
14 | 13 | wl 66 |
. . . 4
⊢
λf:(∗ →
(∗ → ∗)) [⊤f:(∗ → (∗ →
∗))⊤]:((∗ → (∗ → ∗)) →
∗) |
15 | 11, 14 | weqi 76 |
. . 3
⊢
[λf:(∗ →
(∗ → ∗)) [p:∗f:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]]:∗ |
16 | | weq 41 |
. . . 4
⊢ = :(((∗
→ (∗ → ∗)) → ∗) → (((∗ →
(∗ → ∗)) → ∗) → ∗)) |
17 | 8, 2 | weqi 76 |
. . . . . . 7
⊢ [p:∗ = A]:∗ |
18 | 17 | id 25 |
. . . . . 6
⊢ [p:∗ = A]⊧[p:∗ = A] |
19 | 7, 8, 9, 18 | oveq1 99 |
. . . . 5
⊢ [p:∗ = A]⊧[[p:∗f:(∗ → (∗ →
∗))q:∗] = [Af:(∗
→ (∗ → ∗))q:∗]] |
20 | 10, 19 | leq 91 |
. . . 4
⊢ [p:∗ = A]⊧[λf:(∗ → (∗ → ∗))
[p:∗f:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [Af:(∗ → (∗ →
∗))q:∗]] |
21 | 16, 11, 14, 20 | oveq1 99 |
. . 3
⊢ [p:∗ = A]⊧[[λf:(∗ → (∗ → ∗))
[p:∗f:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]] = [λf:(∗ → (∗ → ∗))
[Af:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]]] |
22 | 7, 2, 9 | wov 72 |
. . . . 5
⊢ [Af:(∗
→ (∗ → ∗))q:∗]:∗ |
23 | 22 | wl 66 |
. . . 4
⊢
λf:(∗ →
(∗ → ∗)) [Af:(∗ → (∗ →
∗))q:∗]:((∗ →
(∗ → ∗)) → ∗) |
24 | 9, 3 | weqi 76 |
. . . . . . 7
⊢ [q:∗ = B]:∗ |
25 | 24 | id 25 |
. . . . . 6
⊢ [q:∗ = B]⊧[q:∗ = B] |
26 | 7, 2, 9, 25 | oveq2 101 |
. . . . 5
⊢ [q:∗ = B]⊧[[Af:(∗
→ (∗ → ∗))q:∗] = [Af:(∗
→ (∗ → ∗))B]] |
27 | 22, 26 | leq 91 |
. . . 4
⊢ [q:∗ = B]⊧[λf:(∗ → (∗ → ∗))
[Af:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [Af:(∗ → (∗ →
∗))B]] |
28 | 16, 23, 14, 27 | oveq1 99 |
. . 3
⊢ [q:∗ = B]⊧[[λf:(∗ → (∗ → ∗))
[Af:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]] = [λf:(∗ → (∗ → ∗))
[Af:(∗ → (∗ →
∗))B] = λf:(∗ → (∗ → ∗))
[⊤f:(∗ → (∗
→ ∗))⊤]]] |
29 | 15, 2, 3, 21, 28 | ovl 117 |
. 2
⊢
⊤⊧[[Aλp:∗ λq:∗ [λf:(∗ → (∗ → ∗))
[p:∗f:(∗ → (∗ →
∗))q:∗] =
λf:(∗ → (∗
→ ∗)) [⊤f:(∗
→ (∗ → ∗))⊤]]B] = [λf:(∗ → (∗ → ∗))
[Af:(∗ → (∗ →
∗))B] = λf:(∗ → (∗ → ∗))
[⊤f:(∗ → (∗
→ ∗))⊤]]] |
30 | 4, 6, 29 | eqtri 95 |
1
⊢
⊤⊧[[A ∧ B] =
[λf:(∗ →
(∗ → ∗)) [Af:(∗ → (∗ →
∗))B] = λf:(∗ → (∗ → ∗))
[⊤f:(∗ → (∗
→ ∗))⊤]]] |