Higher-Order Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HOLE Home  >  Th. List  >  oveq2 GIF version

Theorem oveq2 91
 Description: Equality theorem for binary operation.
Hypotheses
Ref Expression
oveq.1 F:(α → (βγ))
oveq.2 A:α
oveq.3 B:β
oveq2.4 R⊧[B = T]
Assertion
Ref Expression
oveq2 R⊧[[AFB] = [AFT]]

Proof of Theorem oveq2
StepHypRef Expression
1 oveq.1 . 2 F:(α → (βγ))
2 oveq.2 . 2 A:α
3 oveq.3 . 2 B:β
4 oveq2.4 . . . 4 R⊧[B = T]
54ax-cb1 29 . . 3 R:∗
65, 2eqid 73 . 2 R⊧[A = A]
71, 2, 3, 6, 4oveq12 90 1 R⊧[[AFB] = [AFT]]
 Colors of variables: type var term Syntax hints:   → ht 2   = ke 7  [kbr 9  ⊧wffMMJ2 11  wffMMJ2t 12 This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-refl 39  ax-eqmp 42  ax-ceq 46 This theorem depends on definitions:  df-ov 65 This theorem is referenced by:  imval  136  orval  137  anval  138  ecase  153  exlimdv2  156  exlimd  171  axpow  208  axun  209
 Copyright terms: Public domain W3C validator