Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eu2 | Unicode version |
Description: An alternate way of defining existential uniqueness. Definition 6.10 of [TakeutiZaring] p. 26. (Contributed by NM, 8-Jul-1994.) |
Ref | Expression |
---|---|
eu2.1 |
Ref | Expression |
---|---|
eu2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2044 | . . 3 | |
2 | eu2.1 | . . . . . 6 | |
3 | 2 | nfri 1507 | . . . . 5 |
4 | 3 | eumo0 2045 | . . . 4 |
5 | 2 | mo23 2055 | . . . 4 |
6 | 4, 5 | syl 14 | . . 3 |
7 | 1, 6 | jca 304 | . 2 |
8 | 19.29r 1609 | . . . 4 | |
9 | impexp 261 | . . . . . . . . 9 | |
10 | 9 | albii 1458 | . . . . . . . 8 |
11 | 2 | 19.21 1571 | . . . . . . . 8 |
12 | 10, 11 | bitri 183 | . . . . . . 7 |
13 | 12 | anbi2i 453 | . . . . . 6 |
14 | abai 550 | . . . . . 6 | |
15 | 13, 14 | bitr4i 186 | . . . . 5 |
16 | 15 | exbii 1593 | . . . 4 |
17 | 8, 16 | sylib 121 | . . 3 |
18 | 3 | eu1 2039 | . . 3 |
19 | 17, 18 | sylibr 133 | . 2 |
20 | 7, 19 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wnf 1448 wex 1480 wsb 1750 weu 2014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 |
This theorem is referenced by: eu3h 2059 mo3h 2067 bm1.1 2150 reu2 2914 |
Copyright terms: Public domain | W3C validator |