| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eu2 | Unicode version | ||
| Description: An alternate way of defining existential uniqueness. Definition 6.10 of [TakeutiZaring] p. 26. (Contributed by NM, 8-Jul-1994.) |
| Ref | Expression |
|---|---|
| eu2.1 |
|
| Ref | Expression |
|---|---|
| eu2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2075 |
. . 3
| |
| 2 | eu2.1 |
. . . . . 6
| |
| 3 | 2 | nfri 1533 |
. . . . 5
|
| 4 | 3 | eumo0 2076 |
. . . 4
|
| 5 | 2 | mo23 2086 |
. . . 4
|
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | 1, 6 | jca 306 |
. 2
|
| 8 | 19.29r 1635 |
. . . 4
| |
| 9 | impexp 263 |
. . . . . . . . 9
| |
| 10 | 9 | albii 1484 |
. . . . . . . 8
|
| 11 | 2 | 19.21 1597 |
. . . . . . . 8
|
| 12 | 10, 11 | bitri 184 |
. . . . . . 7
|
| 13 | 12 | anbi2i 457 |
. . . . . 6
|
| 14 | abai 560 |
. . . . . 6
| |
| 15 | 13, 14 | bitr4i 187 |
. . . . 5
|
| 16 | 15 | exbii 1619 |
. . . 4
|
| 17 | 8, 16 | sylib 122 |
. . 3
|
| 18 | 3 | eu1 2070 |
. . 3
|
| 19 | 17, 18 | sylibr 134 |
. 2
|
| 20 | 7, 19 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 |
| This theorem is referenced by: eu3h 2090 mo3h 2098 bm1.1 2181 reu2 2952 |
| Copyright terms: Public domain | W3C validator |