| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eu2 | Unicode version | ||
| Description: An alternate way of defining existential uniqueness. Definition 6.10 of [TakeutiZaring] p. 26. (Contributed by NM, 8-Jul-1994.) | 
| Ref | Expression | 
|---|---|
| eu2.1 | 
 | 
| Ref | Expression | 
|---|---|
| eu2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | euex 2075 | 
. . 3
 | |
| 2 | eu2.1 | 
. . . . . 6
 | |
| 3 | 2 | nfri 1533 | 
. . . . 5
 | 
| 4 | 3 | eumo0 2076 | 
. . . 4
 | 
| 5 | 2 | mo23 2086 | 
. . . 4
 | 
| 6 | 4, 5 | syl 14 | 
. . 3
 | 
| 7 | 1, 6 | jca 306 | 
. 2
 | 
| 8 | 19.29r 1635 | 
. . . 4
 | |
| 9 | impexp 263 | 
. . . . . . . . 9
 | |
| 10 | 9 | albii 1484 | 
. . . . . . . 8
 | 
| 11 | 2 | 19.21 1597 | 
. . . . . . . 8
 | 
| 12 | 10, 11 | bitri 184 | 
. . . . . . 7
 | 
| 13 | 12 | anbi2i 457 | 
. . . . . 6
 | 
| 14 | abai 560 | 
. . . . . 6
 | |
| 15 | 13, 14 | bitr4i 187 | 
. . . . 5
 | 
| 16 | 15 | exbii 1619 | 
. . . 4
 | 
| 17 | 8, 16 | sylib 122 | 
. . 3
 | 
| 18 | 3 | eu1 2070 | 
. . 3
 | 
| 19 | 17, 18 | sylibr 134 | 
. 2
 | 
| 20 | 7, 19 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 | 
| This theorem is referenced by: eu3h 2090 mo3h 2098 bm1.1 2181 reu2 2952 | 
| Copyright terms: Public domain | W3C validator |