Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eu2 | Unicode version |
Description: An alternate way of defining existential uniqueness. Definition 6.10 of [TakeutiZaring] p. 26. (Contributed by NM, 8-Jul-1994.) |
Ref | Expression |
---|---|
eu2.1 |
Ref | Expression |
---|---|
eu2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2049 | . . 3 | |
2 | eu2.1 | . . . . . 6 | |
3 | 2 | nfri 1512 | . . . . 5 |
4 | 3 | eumo0 2050 | . . . 4 |
5 | 2 | mo23 2060 | . . . 4 |
6 | 4, 5 | syl 14 | . . 3 |
7 | 1, 6 | jca 304 | . 2 |
8 | 19.29r 1614 | . . . 4 | |
9 | impexp 261 | . . . . . . . . 9 | |
10 | 9 | albii 1463 | . . . . . . . 8 |
11 | 2 | 19.21 1576 | . . . . . . . 8 |
12 | 10, 11 | bitri 183 | . . . . . . 7 |
13 | 12 | anbi2i 454 | . . . . . 6 |
14 | abai 555 | . . . . . 6 | |
15 | 13, 14 | bitr4i 186 | . . . . 5 |
16 | 15 | exbii 1598 | . . . 4 |
17 | 8, 16 | sylib 121 | . . 3 |
18 | 3 | eu1 2044 | . . 3 |
19 | 17, 18 | sylibr 133 | . 2 |
20 | 7, 19 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wnf 1453 wex 1485 wsb 1755 weu 2019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 |
This theorem is referenced by: eu3h 2064 mo3h 2072 bm1.1 2155 reu2 2918 |
Copyright terms: Public domain | W3C validator |