ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moanim Unicode version

Theorem moanim 2088
Description: Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 3-Dec-2001.)
Hypothesis
Ref Expression
moanim.1  |-  F/ x ph
Assertion
Ref Expression
moanim  |-  ( E* x ( ph  /\  ps )  <->  ( ph  ->  E* x ps ) )

Proof of Theorem moanim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 anandi 580 . . . . 5  |-  ( (
ph  /\  ( ps  /\ 
[ y  /  x ] ps ) )  <->  ( ( ph  /\  ps )  /\  ( ph  /\  [ y  /  x ] ps ) ) )
21imbi1i 237 . . . 4  |-  ( ( ( ph  /\  ( ps  /\  [ y  /  x ] ps ) )  ->  x  =  y )  <->  ( ( (
ph  /\  ps )  /\  ( ph  /\  [
y  /  x ] ps ) )  ->  x  =  y ) )
3 impexp 261 . . . 4  |-  ( ( ( ph  /\  ( ps  /\  [ y  /  x ] ps ) )  ->  x  =  y )  <->  ( ph  ->  ( ( ps  /\  [
y  /  x ] ps )  ->  x  =  y ) ) )
4 sban 1943 . . . . . . 7  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
5 moanim.1 . . . . . . . . 9  |-  F/ x ph
65sbf 1765 . . . . . . . 8  |-  ( [ y  /  x ] ph 
<-> 
ph )
76anbi1i 454 . . . . . . 7  |-  ( ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) 
<->  ( ph  /\  [
y  /  x ] ps ) )
84, 7bitr2i 184 . . . . . 6  |-  ( (
ph  /\  [ y  /  x ] ps )  <->  [ y  /  x ]
( ph  /\  ps )
)
98anbi2i 453 . . . . 5  |-  ( ( ( ph  /\  ps )  /\  ( ph  /\  [ y  /  x ] ps ) )  <->  ( ( ph  /\  ps )  /\  [ y  /  x ]
( ph  /\  ps )
) )
109imbi1i 237 . . . 4  |-  ( ( ( ( ph  /\  ps )  /\  ( ph  /\  [ y  /  x ] ps ) )  ->  x  =  y )  <->  ( ( (
ph  /\  ps )  /\  [ y  /  x ] ( ph  /\  ps ) )  ->  x  =  y ) )
112, 3, 103bitr3i 209 . . 3  |-  ( (
ph  ->  ( ( ps 
/\  [ y  /  x ] ps )  ->  x  =  y )
)  <->  ( ( (
ph  /\  ps )  /\  [ y  /  x ] ( ph  /\  ps ) )  ->  x  =  y ) )
12112albii 1459 . 2  |-  ( A. x A. y ( ph  ->  ( ( ps  /\  [ y  /  x ] ps )  ->  x  =  y ) )  <->  A. x A. y ( ( (
ph  /\  ps )  /\  [ y  /  x ] ( ph  /\  ps ) )  ->  x  =  y ) )
13519.21 1571 . . 3  |-  ( A. x ( ph  ->  A. y ( ( ps 
/\  [ y  /  x ] ps )  ->  x  =  y )
)  <->  ( ph  ->  A. x A. y ( ( ps  /\  [
y  /  x ] ps )  ->  x  =  y ) ) )
14 19.21v 1861 . . . 4  |-  ( A. y ( ph  ->  ( ( ps  /\  [
y  /  x ] ps )  ->  x  =  y ) )  <->  ( ph  ->  A. y ( ( ps  /\  [ y  /  x ] ps )  ->  x  =  y ) ) )
1514albii 1458 . . 3  |-  ( A. x A. y ( ph  ->  ( ( ps  /\  [ y  /  x ] ps )  ->  x  =  y ) )  <->  A. x
( ph  ->  A. y
( ( ps  /\  [ y  /  x ] ps )  ->  x  =  y ) ) )
16 ax-17 1514 . . . . 5  |-  ( ps 
->  A. y ps )
1716mo3h 2067 . . . 4  |-  ( E* x ps  <->  A. x A. y ( ( ps 
/\  [ y  /  x ] ps )  ->  x  =  y )
)
1817imbi2i 225 . . 3  |-  ( (
ph  ->  E* x ps )  <->  ( ph  ->  A. x A. y ( ( ps  /\  [
y  /  x ] ps )  ->  x  =  y ) ) )
1913, 15, 183bitr4ri 212 . 2  |-  ( (
ph  ->  E* x ps )  <->  A. x A. y
( ph  ->  ( ( ps  /\  [ y  /  x ] ps )  ->  x  =  y ) ) )
20 ax-17 1514 . . 3  |-  ( (
ph  /\  ps )  ->  A. y ( ph  /\ 
ps ) )
2120mo3h 2067 . 2  |-  ( E* x ( ph  /\  ps )  <->  A. x A. y
( ( ( ph  /\ 
ps )  /\  [
y  /  x ]
( ph  /\  ps )
)  ->  x  =  y ) )
2212, 19, 213bitr4ri 212 1  |-  ( E* x ( ph  /\  ps )  <->  ( ph  ->  E* x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341   F/wnf 1448   [wsb 1750   E*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by:  moanimv  2089  moaneu  2090  moanmo  2091
  Copyright terms: Public domain W3C validator