| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moanim | Unicode version | ||
| Description: Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 3-Dec-2001.) |
| Ref | Expression |
|---|---|
| moanim.1 |
|
| Ref | Expression |
|---|---|
| moanim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandi 590 |
. . . . 5
| |
| 2 | 1 | imbi1i 238 |
. . . 4
|
| 3 | impexp 263 |
. . . 4
| |
| 4 | sban 1974 |
. . . . . . 7
| |
| 5 | moanim.1 |
. . . . . . . . 9
| |
| 6 | 5 | sbf 1791 |
. . . . . . . 8
|
| 7 | 6 | anbi1i 458 |
. . . . . . 7
|
| 8 | 4, 7 | bitr2i 185 |
. . . . . 6
|
| 9 | 8 | anbi2i 457 |
. . . . 5
|
| 10 | 9 | imbi1i 238 |
. . . 4
|
| 11 | 2, 3, 10 | 3bitr3i 210 |
. . 3
|
| 12 | 11 | 2albii 1485 |
. 2
|
| 13 | 5 | 19.21 1597 |
. . 3
|
| 14 | 19.21v 1887 |
. . . 4
| |
| 15 | 14 | albii 1484 |
. . 3
|
| 16 | ax-17 1540 |
. . . . 5
| |
| 17 | 16 | mo3h 2098 |
. . . 4
|
| 18 | 17 | imbi2i 226 |
. . 3
|
| 19 | 13, 15, 18 | 3bitr4ri 213 |
. 2
|
| 20 | ax-17 1540 |
. . 3
| |
| 21 | 20 | mo3h 2098 |
. 2
|
| 22 | 12, 19, 21 | 3bitr4ri 213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 |
| This theorem is referenced by: moanimv 2120 moaneu 2121 moanmo 2122 |
| Copyright terms: Public domain | W3C validator |