ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r2alf Unicode version

Theorem r2alf 2426
Description: Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
r2alf.1  |-  F/_ y A
Assertion
Ref Expression
r2alf  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)    B( x, y)

Proof of Theorem r2alf
StepHypRef Expression
1 df-ral 2395 . 2  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x
( x  e.  A  ->  A. y  e.  B  ph ) )
2 r2alf.1 . . . . . 6  |-  F/_ y A
32nfcri 2249 . . . . 5  |-  F/ y  x  e.  A
4319.21 1545 . . . 4  |-  ( A. y ( x  e.  A  ->  ( y  e.  B  ->  ph )
)  <->  ( x  e.  A  ->  A. y
( y  e.  B  ->  ph ) ) )
5 impexp 261 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  B
)  ->  ph )  <->  ( x  e.  A  ->  ( y  e.  B  ->  ph )
) )
65albii 1429 . . . 4  |-  ( A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  A. y ( x  e.  A  ->  ( y  e.  B  ->  ph )
) )
7 df-ral 2395 . . . . 5  |-  ( A. y  e.  B  ph  <->  A. y
( y  e.  B  ->  ph ) )
87imbi2i 225 . . . 4  |-  ( ( x  e.  A  ->  A. y  e.  B  ph )  <->  ( x  e.  A  ->  A. y
( y  e.  B  ->  ph ) ) )
94, 6, 83bitr4i 211 . . 3  |-  ( A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  ( x  e.  A  ->  A. y  e.  B  ph ) )
109albii 1429 . 2  |-  ( A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )  <->  A. x
( x  e.  A  ->  A. y  e.  B  ph ) )
111, 10bitr4i 186 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1312    e. wcel 1463   F/_wnfc 2242   A.wral 2390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-sb 1719  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395
This theorem is referenced by:  r2al  2428  ralcomf  2566
  Copyright terms: Public domain W3C validator