ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21t Unicode version

Theorem 19.21t 1570
Description: Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.)
Assertion
Ref Expression
19.21t  |-  ( F/ x ph  ->  ( A. x ( ph  ->  ps )  <->  ( ph  ->  A. x ps ) ) )

Proof of Theorem 19.21t
StepHypRef Expression
1 df-nf 1449 . 2  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
2 19.21ht 1569 . 2  |-  ( A. x ( ph  ->  A. x ph )  -> 
( A. x (
ph  ->  ps )  <->  ( ph  ->  A. x ps )
) )
31, 2sylbi 120 1  |-  ( F/ x ph  ->  ( A. x ( ph  ->  ps )  <->  ( ph  ->  A. x ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341   F/wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  19.21  1571  nfimd  1573  equs5or  1818  sbal1yz  1989  r19.21t  2541  ceqsalt  2752  sbciegft  2981
  Copyright terms: Public domain W3C validator