ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo3h Unicode version

Theorem mo3h 2002
Description: Alternate definition of "at most one." Definition of [BellMachover] p. 460, except that definition has the side condition that  y not occur in  ph in place of our hypothesis. (Contributed by NM, 8-Mar-1995.) (New usage is discouraged.)
Hypothesis
Ref Expression
mo3h.1  |-  ( ph  ->  A. y ph )
Assertion
Ref Expression
mo3h  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem mo3h
StepHypRef Expression
1 mo3h.1 . . . . . . 7  |-  ( ph  ->  A. y ph )
21nfi 1397 . . . . . 6  |-  F/ y
ph
32eu2 1993 . . . . 5  |-  ( E! x ph  <->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
43imbi2i 225 . . . 4  |-  ( ( E. x ph  ->  E! x ph )  <->  ( E. x ph  ->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) ) )
5 df-mo 1953 . . . 4  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
6 anclb 313 . . . 4  |-  ( ( E. x ph  ->  A. x A. y ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )  <->  ( E. x ph  ->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) ) )
74, 5, 63bitr4i 211 . . 3  |-  ( E* x ph  <->  ( E. x ph  ->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
8 19.38 1612 . . . . 5  |-  ( ( E. x ph  ->  A. x A. y ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )  ->  A. x ( ph  ->  A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
9219.21 1521 . . . . . 6  |-  ( A. y ( ph  ->  ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )  <->  ( ph  ->  A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
109albii 1405 . . . . 5  |-  ( A. x A. y ( ph  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )  <->  A. x
( ph  ->  A. y
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
118, 10sylibr 133 . . . 4  |-  ( ( E. x ph  ->  A. x A. y ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )  ->  A. x A. y (
ph  ->  ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
12 anabs5 541 . . . . . 6  |-  ( (
ph  /\  ( ph  /\ 
[ y  /  x ] ph ) )  <->  ( ph  /\ 
[ y  /  x ] ph ) )
13 pm3.31 259 . . . . . 6  |-  ( (
ph  ->  ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )  ->  ( ( ph  /\  ( ph  /\  [
y  /  x ] ph ) )  ->  x  =  y ) )
1412, 13syl5bir 152 . . . . 5  |-  ( (
ph  ->  ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )  ->  ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
15142alimi 1391 . . . 4  |-  ( A. x A. y ( ph  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )  ->  A. x A. y ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )
1611, 15syl 14 . . 3  |-  ( ( E. x ph  ->  A. x A. y ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )  ->  A. x A. y ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )
177, 16sylbi 120 . 2  |-  ( E* x ph  ->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
183simplbi2com 1379 . . 3  |-  ( A. x A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  ( E. x ph  ->  E! x ph ) )
1918, 5sylibr 133 . 2  |-  ( A. x A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  E* x ph )
2017, 19impbii 125 1  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1288   E.wex 1427   [wsb 1693   E!weu 1949   E*wmo 1950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953
This theorem is referenced by:  mo3  2003  mo2dc  2004  mo4f  2009  moim  2013  moimv  2015  moanim  2023  mopick  2027
  Copyright terms: Public domain W3C validator