ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimih Unicode version

Theorem exlimih 1616
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypotheses
Ref Expression
exlimih.1  |-  ( ps 
->  A. x ps )
exlimih.2  |-  ( ph  ->  ps )
Assertion
Ref Expression
exlimih  |-  ( E. x ph  ->  ps )

Proof of Theorem exlimih
StepHypRef Expression
1 exlimih.1 . . 3  |-  ( ps 
->  A. x ps )
2119.23h 1521 . 2  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
3 exlimih.2 . 2  |-  ( ph  ->  ps )
42, 3mpgbi 1475 1  |-  ( E. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1472  ax-ie2 1517
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exlimi  1617  exlimiv  1621  19.43  1651  hbex  1659  ax6blem  1673  19.41h  1708  ax9o  1721  equid  1724  equsex  1751  cbvexh  1778  equs5a  1817  sb5rf  1875  equvin  1886  euan  2110  moexexdc  2138
  Copyright terms: Public domain W3C validator