ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimih Unicode version

Theorem exlimih 1555
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypotheses
Ref Expression
exlimih.1  |-  ( ps 
->  A. x ps )
exlimih.2  |-  ( ph  ->  ps )
Assertion
Ref Expression
exlimih  |-  ( E. x ph  ->  ps )

Proof of Theorem exlimih
StepHypRef Expression
1 exlimih.1 . . 3  |-  ( ps 
->  A. x ps )
2119.23h 1457 . 2  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
3 exlimih.2 . 2  |-  ( ph  ->  ps )
42, 3mpgbi 1411 1  |-  ( E. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1312   E.wex 1451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-gen 1408  ax-ie2 1453
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exlimi  1556  exlimiv  1560  19.43  1590  hbex  1598  ax6blem  1611  19.41h  1646  ax9o  1659  equid  1660  equsex  1689  cbvexh  1711  equs5a  1748  sb5rf  1806  equvin  1817  euan  2031  moexexdc  2059
  Copyright terms: Public domain W3C validator