ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimih Unicode version

Theorem exlimih 1570
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypotheses
Ref Expression
exlimih.1  |-  ( ps 
->  A. x ps )
exlimih.2  |-  ( ph  ->  ps )
Assertion
Ref Expression
exlimih  |-  ( E. x ph  ->  ps )

Proof of Theorem exlimih
StepHypRef Expression
1 exlimih.1 . . 3  |-  ( ps 
->  A. x ps )
2119.23h 1475 . 2  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
3 exlimih.2 . 2  |-  ( ph  ->  ps )
42, 3mpgbi 1429 1  |-  ( E. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1330   E.wex 1469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-gen 1426  ax-ie2 1471
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exlimi  1571  exlimiv  1575  19.43  1605  hbex  1613  ax6blem  1627  19.41h  1662  ax9o  1675  equid  1678  equsex  1705  cbvexh  1732  equs5a  1771  sb5rf  1829  equvin  1840  euan  2059  moexexdc  2087
  Copyright terms: Public domain W3C validator