ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo2icl Unicode version

Theorem mo2icl 2918
Description: Theorem for inferring "at most one". (Contributed by NM, 17-Oct-1996.)
Assertion
Ref Expression
mo2icl  |-  ( A. x ( ph  ->  x  =  A )  ->  E* x ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem mo2icl
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfa1 1541 . . . . 5  |-  F/ x A. x ( ph  ->  x  =  A )
2 vex 2742 . . . . . . . 8  |-  x  e. 
_V
3 eleq1 2240 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  _V  <->  A  e.  _V ) )
42, 3mpbii 148 . . . . . . 7  |-  ( x  =  A  ->  A  e.  _V )
54imim2i 12 . . . . . 6  |-  ( (
ph  ->  x  =  A )  ->  ( ph  ->  A  e.  _V )
)
65sps 1537 . . . . 5  |-  ( A. x ( ph  ->  x  =  A )  -> 
( ph  ->  A  e. 
_V ) )
71, 6eximd 1612 . . . 4  |-  ( A. x ( ph  ->  x  =  A )  -> 
( E. x ph  ->  E. x  A  e. 
_V ) )
8 19.9v 1871 . . . 4  |-  ( E. x  A  e.  _V  <->  A  e.  _V )
97, 8imbitrdi 161 . . 3  |-  ( A. x ( ph  ->  x  =  A )  -> 
( E. x ph  ->  A  e.  _V )
)
10 eqeq2 2187 . . . . . . . 8  |-  ( y  =  A  ->  (
x  =  y  <->  x  =  A ) )
1110imbi2d 230 . . . . . . 7  |-  ( y  =  A  ->  (
( ph  ->  x  =  y )  <->  ( ph  ->  x  =  A ) ) )
1211albidv 1824 . . . . . 6  |-  ( y  =  A  ->  ( A. x ( ph  ->  x  =  y )  <->  A. x
( ph  ->  x  =  A ) ) )
1312imbi1d 231 . . . . 5  |-  ( y  =  A  ->  (
( A. x (
ph  ->  x  =  y )  ->  E* x ph )  <->  ( A. x
( ph  ->  x  =  A )  ->  E* x ph ) ) )
14 nfv 1528 . . . . . . 7  |-  F/ y
ph
1514mo2r 2078 . . . . . 6  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  E* x ph )
161519.23bi 1592 . . . . 5  |-  ( A. x ( ph  ->  x  =  y )  ->  E* x ph )
1713, 16vtoclg 2799 . . . 4  |-  ( A  e.  _V  ->  ( A. x ( ph  ->  x  =  A )  ->  E* x ph ) )
1817com12 30 . . 3  |-  ( A. x ( ph  ->  x  =  A )  -> 
( A  e.  _V  ->  E* x ph )
)
199, 18syld 45 . 2  |-  ( A. x ( ph  ->  x  =  A )  -> 
( E. x ph  ->  E* x ph )
)
20 moabs 2075 . 2  |-  ( E* x ph  <->  ( E. x ph  ->  E* x ph ) )
2119, 20sylibr 134 1  |-  ( A. x ( ph  ->  x  =  A )  ->  E* x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351    = wceq 1353   E.wex 1492   E*wmo 2027    e. wcel 2148   _Vcvv 2739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741
This theorem is referenced by:  invdisj  3999  imasaddfnlemg  12740
  Copyright terms: Public domain W3C validator