ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo2icl Unicode version

Theorem mo2icl 2951
Description: Theorem for inferring "at most one". (Contributed by NM, 17-Oct-1996.)
Assertion
Ref Expression
mo2icl  |-  ( A. x ( ph  ->  x  =  A )  ->  E* x ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem mo2icl
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfa1 1563 . . . . 5  |-  F/ x A. x ( ph  ->  x  =  A )
2 vex 2774 . . . . . . . 8  |-  x  e. 
_V
3 eleq1 2267 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  _V  <->  A  e.  _V ) )
42, 3mpbii 148 . . . . . . 7  |-  ( x  =  A  ->  A  e.  _V )
54imim2i 12 . . . . . 6  |-  ( (
ph  ->  x  =  A )  ->  ( ph  ->  A  e.  _V )
)
65sps 1559 . . . . 5  |-  ( A. x ( ph  ->  x  =  A )  -> 
( ph  ->  A  e. 
_V ) )
71, 6eximd 1634 . . . 4  |-  ( A. x ( ph  ->  x  =  A )  -> 
( E. x ph  ->  E. x  A  e. 
_V ) )
8 19.9v 1893 . . . 4  |-  ( E. x  A  e.  _V  <->  A  e.  _V )
97, 8imbitrdi 161 . . 3  |-  ( A. x ( ph  ->  x  =  A )  -> 
( E. x ph  ->  A  e.  _V )
)
10 eqeq2 2214 . . . . . . . 8  |-  ( y  =  A  ->  (
x  =  y  <->  x  =  A ) )
1110imbi2d 230 . . . . . . 7  |-  ( y  =  A  ->  (
( ph  ->  x  =  y )  <->  ( ph  ->  x  =  A ) ) )
1211albidv 1846 . . . . . 6  |-  ( y  =  A  ->  ( A. x ( ph  ->  x  =  y )  <->  A. x
( ph  ->  x  =  A ) ) )
1312imbi1d 231 . . . . 5  |-  ( y  =  A  ->  (
( A. x (
ph  ->  x  =  y )  ->  E* x ph )  <->  ( A. x
( ph  ->  x  =  A )  ->  E* x ph ) ) )
14 nfv 1550 . . . . . . 7  |-  F/ y
ph
1514mo2r 2105 . . . . . 6  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  E* x ph )
161519.23bi 1614 . . . . 5  |-  ( A. x ( ph  ->  x  =  y )  ->  E* x ph )
1713, 16vtoclg 2832 . . . 4  |-  ( A  e.  _V  ->  ( A. x ( ph  ->  x  =  A )  ->  E* x ph ) )
1817com12 30 . . 3  |-  ( A. x ( ph  ->  x  =  A )  -> 
( A  e.  _V  ->  E* x ph )
)
199, 18syld 45 . 2  |-  ( A. x ( ph  ->  x  =  A )  -> 
( E. x ph  ->  E* x ph )
)
20 moabs 2102 . 2  |-  ( E* x ph  <->  ( E. x ph  ->  E* x ph ) )
2119, 20sylibr 134 1  |-  ( A. x ( ph  ->  x  =  A )  ->  E* x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1370    = wceq 1372   E.wex 1514   E*wmo 2054    e. wcel 2175   _Vcvv 2771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773
This theorem is referenced by:  invdisj  4037  imasaddfnlemg  13064
  Copyright terms: Public domain W3C validator