ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.42 Unicode version

Theorem 19.42 1676
Description: Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
19.42.1  |-  F/ x ph
Assertion
Ref Expression
19.42  |-  ( E. x ( ph  /\  ps )  <->  ( ph  /\  E. x ps ) )

Proof of Theorem 19.42
StepHypRef Expression
1 19.42.1 . . 3  |-  F/ x ph
2119.41 1674 . 2  |-  ( E. x ( ps  /\  ph )  <->  ( E. x ps  /\  ph ) )
3 exancom 1596 . 2  |-  ( E. x ( ph  /\  ps )  <->  E. x ( ps 
/\  ph ) )
4 ancom 264 . 2  |-  ( (
ph  /\  E. x ps )  <->  ( E. x ps  /\  ph ) )
52, 3, 43bitr4i 211 1  |-  ( E. x ( ph  /\  ps )  <->  ( ph  /\  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   F/wnf 1448   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  eean  1919  r2exf  2484
  Copyright terms: Public domain W3C validator