ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.42 Unicode version

Theorem 19.42 1623
Description: Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
19.42.1  |-  F/ x ph
Assertion
Ref Expression
19.42  |-  ( E. x ( ph  /\  ps )  <->  ( ph  /\  E. x ps ) )

Proof of Theorem 19.42
StepHypRef Expression
1 19.42.1 . . 3  |-  F/ x ph
2119.41 1621 . 2  |-  ( E. x ( ps  /\  ph )  <->  ( E. x ps  /\  ph ) )
3 exancom 1544 . 2  |-  ( E. x ( ph  /\  ps )  <->  E. x ( ps 
/\  ph ) )
4 ancom 262 . 2  |-  ( (
ph  /\  E. x ps )  <->  ( E. x ps  /\  ph ) )
52, 3, 43bitr4i 210 1  |-  ( E. x ( ph  /\  ps )  <->  ( ph  /\  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103   F/wnf 1394   E.wex 1426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-ial 1472
This theorem depends on definitions:  df-bi 115  df-nf 1395
This theorem is referenced by:  eean  1854  r2exf  2396
  Copyright terms: Public domain W3C validator