| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.42 | GIF version | ||
| Description: Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.42.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| 19.42 | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | 19.41 1700 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜑) ↔ (∃𝑥𝜓 ∧ 𝜑)) |
| 3 | exancom 1622 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜓 ∧ 𝜑)) | |
| 4 | ancom 266 | . 2 ⊢ ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓 ∧ 𝜑)) | |
| 5 | 2, 3, 4 | 3bitr4i 212 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 Ⅎwnf 1474 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: eean 1950 r2exf 2515 |
| Copyright terms: Public domain | W3C validator |