ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.42 GIF version

Theorem 19.42 1710
Description: Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
19.42.1 𝑥𝜑
Assertion
Ref Expression
19.42 (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))

Proof of Theorem 19.42
StepHypRef Expression
1 19.42.1 . . 3 𝑥𝜑
2119.41 1708 . 2 (∃𝑥(𝜓𝜑) ↔ (∃𝑥𝜓𝜑))
3 exancom 1630 . 2 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
4 ancom 266 . 2 ((𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜓𝜑))
52, 3, 43bitr4i 212 1 (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wnf 1482  wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-nf 1483
This theorem is referenced by:  eean  1958  r2exf  2523
  Copyright terms: Public domain W3C validator