ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r2exf Unicode version

Theorem r2exf 2456
Description: Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
r2alf.1  |-  F/_ y A
Assertion
Ref Expression
r2exf  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)    B( x, y)

Proof of Theorem r2exf
StepHypRef Expression
1 df-rex 2423 . 2  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x
( x  e.  A  /\  E. y  e.  B  ph ) )
2 r2alf.1 . . . . . 6  |-  F/_ y A
32nfcri 2276 . . . . 5  |-  F/ y  x  e.  A
4319.42 1667 . . . 4  |-  ( E. y ( x  e.  A  /\  ( y  e.  B  /\  ph ) )  <->  ( x  e.  A  /\  E. y
( y  e.  B  /\  ph ) ) )
5 anass 399 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  <->  ( x  e.  A  /\  (
y  e.  B  /\  ph ) ) )
65exbii 1585 . . . 4  |-  ( E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) 
<->  E. y ( x  e.  A  /\  (
y  e.  B  /\  ph ) ) )
7 df-rex 2423 . . . . 5  |-  ( E. y  e.  B  ph  <->  E. y ( y  e.  B  /\  ph )
)
87anbi2i 453 . . . 4  |-  ( ( x  e.  A  /\  E. y  e.  B  ph ) 
<->  ( x  e.  A  /\  E. y ( y  e.  B  /\  ph ) ) )
94, 6, 83bitr4i 211 . . 3  |-  ( E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) 
<->  ( x  e.  A  /\  E. y  e.  B  ph ) )
109exbii 1585 . 2  |-  ( E. x E. y ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  <->  E. x
( x  e.  A  /\  E. y  e.  B  ph ) )
111, 10bitr4i 186 1  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y ( ( x  e.  A  /\  y  e.  B )  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1469    e. wcel 1481   F/_wnfc 2269   E.wrex 2418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rex 2423
This theorem is referenced by:  r2ex  2458  rexcomf  2596
  Copyright terms: Public domain W3C validator