ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exancom Unicode version

Theorem exancom 1631
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
exancom  |-  ( E. x ( ph  /\  ps )  <->  E. x ( ps 
/\  ph ) )

Proof of Theorem exancom
StepHypRef Expression
1 ancom 266 . 2  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
21exbii 1628 1  |-  ( E. x ( ph  /\  ps )  <->  E. x ( ps 
/\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.29r  1644  19.42h  1710  19.42  1711  risset  2534  morex  2957  dfuni2  3852  eluni2  3854  unipr  3864  dfiun2g  3959  uniuni  4499  cnvco  4864  imadif  5355  funimaexglem  5358  pceu  12651  bdcuni  15849  bj-axun2  15888
  Copyright terms: Public domain W3C validator