| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exancom | Unicode version | ||
| Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| exancom | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ancom 266 | 
. 2
 | |
| 2 | 1 | exbii 1619 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: 19.29r 1635 19.42h 1701 19.42 1702 risset 2525 morex 2948 dfuni2 3841 eluni2 3843 unipr 3853 dfiun2g 3948 uniuni 4486 cnvco 4851 imadif 5338 funimaexglem 5341 pceu 12464 bdcuni 15522 bj-axun2 15561 | 
| Copyright terms: Public domain | W3C validator |