| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exancom | Unicode version | ||
| Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| exancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 266 |
. 2
| |
| 2 | 1 | exbii 1628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.29r 1644 19.42h 1710 19.42 1711 risset 2534 morex 2957 dfuni2 3852 eluni2 3854 unipr 3864 dfiun2g 3959 uniuni 4499 cnvco 4864 imadif 5355 funimaexglem 5358 pceu 12651 bdcuni 15849 bj-axun2 15888 |
| Copyright terms: Public domain | W3C validator |