ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exancom Unicode version

Theorem exancom 1568
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
exancom  |-  ( E. x ( ph  /\  ps )  <->  E. x ( ps 
/\  ph ) )

Proof of Theorem exancom
StepHypRef Expression
1 ancom 264 . 2  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
21exbii 1565 1  |-  ( E. x ( ph  /\  ps )  <->  E. x ( ps 
/\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1449
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1404  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-4 1468  ax-ial 1495
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.29r  1581  19.42h  1646  19.42  1647  risset  2435  morex  2835  dfuni2  3702  eluni2  3704  unipr  3714  dfiun2g  3809  uniuni  4330  cnvco  4682  imadif  5159  funimaexglem  5162  bdcuni  12757  bj-axun2  12796
  Copyright terms: Public domain W3C validator