Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exancom | Unicode version |
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
exancom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 266 | . 2 | |
2 | 1 | exbii 1603 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 wex 1490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.29r 1619 19.42h 1685 19.42 1686 risset 2503 morex 2919 dfuni2 3807 eluni2 3809 unipr 3819 dfiun2g 3914 uniuni 4445 cnvco 4805 imadif 5288 funimaexglem 5291 pceu 12262 bdcuni 14188 bj-axun2 14227 |
Copyright terms: Public domain | W3C validator |