| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exancom | Unicode version | ||
| Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| exancom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 266 |
. 2
| |
| 2 | 1 | exbii 1629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.29r 1645 19.42h 1711 19.42 1712 risset 2536 morex 2964 dfuni2 3866 eluni2 3868 unipr 3878 dfiun2g 3973 uniuni 4516 cnvco 4881 imadif 5373 funimaexglem 5376 pceu 12733 bdcuni 16011 bj-axun2 16050 |
| Copyright terms: Public domain | W3C validator |