ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exancom Unicode version

Theorem exancom 1544
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
exancom  |-  ( E. x ( ph  /\  ps )  <->  E. x ( ps 
/\  ph ) )

Proof of Theorem exancom
StepHypRef Expression
1 ancom 262 . 2  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
21exbii 1541 1  |-  ( E. x ( ph  /\  ps )  <->  E. x ( ps 
/\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103   E.wex 1426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-4 1445  ax-ial 1472
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  19.29r  1557  19.42h  1622  19.42  1623  risset  2406  morex  2797  dfuni2  3650  eluni2  3652  unipr  3662  dfiun2g  3757  uniuni  4264  cnvco  4609  imadif  5080  funimaexglem  5083  bdcuni  11413  bj-axun2  11452
  Copyright terms: Public domain W3C validator