ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.42vvv Unicode version

Theorem 19.42vvv 1922
Description: Theorem 19.42 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 21-Sep-2011.)
Assertion
Ref Expression
19.42vvv  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  ( ph  /\  E. x E. y E. z ps ) )
Distinct variable groups:    ph, x    ph, y    ph, z
Allowed substitution hints:    ps( x, y, z)

Proof of Theorem 19.42vvv
StepHypRef Expression
1 19.42vv 1921 . . 3  |-  ( E. y E. z (
ph  /\  ps )  <->  (
ph  /\  E. y E. z ps ) )
21exbii 1615 . 2  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  E. x ( ph  /\ 
E. y E. z ps ) )
3 19.42v 1916 . 2  |-  ( E. x ( ph  /\  E. y E. z ps )  <->  ( ph  /\  E. x E. y E. z ps ) )
42, 3bitri 184 1  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  ( ph  /\  E. x E. y E. z ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536  ax-ial 1544
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ceqsex6v  2793
  Copyright terms: Public domain W3C validator