Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.42vvv | GIF version |
Description: Theorem 19.42 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 21-Sep-2011.) |
Ref | Expression |
---|---|
19.42vvv | ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦∃𝑧𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42vv 1899 | . . 3 ⊢ (∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑦∃𝑧𝜓)) | |
2 | 1 | exbii 1593 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦∃𝑧𝜓)) |
3 | 19.42v 1894 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦∃𝑧𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦∃𝑧𝜓)) | |
4 | 2, 3 | bitri 183 | 1 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦∃𝑧𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ceqsex6v 2770 |
Copyright terms: Public domain | W3C validator |