ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.42vvvv Unicode version

Theorem 19.42vvvv 1885
Description: Theorem 19.42 of [Margaris] p. 90 with 4 quantifiers. (Contributed by Jim Kingdon, 23-Nov-2019.)
Assertion
Ref Expression
19.42vvvv  |-  ( E. w E. x E. y E. z ( ph  /\ 
ps )  <->  ( ph  /\ 
E. w E. x E. y E. z ps ) )
Distinct variable groups:    ph, w    ph, x    ph, y    ph, z
Allowed substitution hints:    ps( x, y, z, w)

Proof of Theorem 19.42vvvv
StepHypRef Expression
1 19.42vv 1883 . . 3  |-  ( E. y E. z (
ph  /\  ps )  <->  (
ph  /\  E. y E. z ps ) )
212exbii 1585 . 2  |-  ( E. w E. x E. y E. z ( ph  /\ 
ps )  <->  E. w E. x ( ph  /\  E. y E. z ps ) )
3 19.42vv 1883 . 2  |-  ( E. w E. x (
ph  /\  E. y E. z ps )  <->  ( ph  /\ 
E. w E. x E. y E. z ps ) )
42, 3bitri 183 1  |-  ( E. w E. x E. y E. z ( ph  /\ 
ps )  <->  ( ph  /\ 
E. w E. x E. y E. z ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-4 1487  ax-17 1506  ax-ial 1514
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ceqsex8v  2731  enq0tr  7249
  Copyright terms: Public domain W3C validator