| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ceqsex6v | Unicode version | ||
| Description: Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| ceqsex6v.1 | 
 | 
| ceqsex6v.2 | 
 | 
| ceqsex6v.3 | 
 | 
| ceqsex6v.4 | 
 | 
| ceqsex6v.5 | 
 | 
| ceqsex6v.6 | 
 | 
| ceqsex6v.7 | 
 | 
| ceqsex6v.8 | 
 | 
| ceqsex6v.9 | 
 | 
| ceqsex6v.10 | 
 | 
| ceqsex6v.11 | 
 | 
| ceqsex6v.12 | 
 | 
| Ref | Expression | 
|---|---|
| ceqsex6v | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3anass 984 | 
. . . . 5
 | |
| 2 | 1 | 3exbii 1621 | 
. . . 4
 | 
| 3 | 19.42vvv 1927 | 
. . . 4
 | |
| 4 | 2, 3 | bitri 184 | 
. . 3
 | 
| 5 | 4 | 3exbii 1621 | 
. 2
 | 
| 6 | ceqsex6v.1 | 
. . . 4
 | |
| 7 | ceqsex6v.2 | 
. . . 4
 | |
| 8 | ceqsex6v.3 | 
. . . 4
 | |
| 9 | ceqsex6v.7 | 
. . . . . 6
 | |
| 10 | 9 | anbi2d 464 | 
. . . . 5
 | 
| 11 | 10 | 3exbidv 1883 | 
. . . 4
 | 
| 12 | ceqsex6v.8 | 
. . . . . 6
 | |
| 13 | 12 | anbi2d 464 | 
. . . . 5
 | 
| 14 | 13 | 3exbidv 1883 | 
. . . 4
 | 
| 15 | ceqsex6v.9 | 
. . . . . 6
 | |
| 16 | 15 | anbi2d 464 | 
. . . . 5
 | 
| 17 | 16 | 3exbidv 1883 | 
. . . 4
 | 
| 18 | 6, 7, 8, 11, 14, 17 | ceqsex3v 2806 | 
. . 3
 | 
| 19 | ceqsex6v.4 | 
. . . 4
 | |
| 20 | ceqsex6v.5 | 
. . . 4
 | |
| 21 | ceqsex6v.6 | 
. . . 4
 | |
| 22 | ceqsex6v.10 | 
. . . 4
 | |
| 23 | ceqsex6v.11 | 
. . . 4
 | |
| 24 | ceqsex6v.12 | 
. . . 4
 | |
| 25 | 19, 20, 21, 22, 23, 24 | ceqsex3v 2806 | 
. . 3
 | 
| 26 | 18, 25 | bitri 184 | 
. 2
 | 
| 27 | 5, 26 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |