ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsex6v Unicode version

Theorem ceqsex6v 2774
Description: Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011.)
Hypotheses
Ref Expression
ceqsex6v.1  |-  A  e. 
_V
ceqsex6v.2  |-  B  e. 
_V
ceqsex6v.3  |-  C  e. 
_V
ceqsex6v.4  |-  D  e. 
_V
ceqsex6v.5  |-  E  e. 
_V
ceqsex6v.6  |-  F  e. 
_V
ceqsex6v.7  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ceqsex6v.8  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
ceqsex6v.9  |-  ( z  =  C  ->  ( ch 
<->  th ) )
ceqsex6v.10  |-  ( w  =  D  ->  ( th 
<->  ta ) )
ceqsex6v.11  |-  ( v  =  E  ->  ( ta 
<->  et ) )
ceqsex6v.12  |-  ( u  =  F  ->  ( et 
<->  ze ) )
Assertion
Ref Expression
ceqsex6v  |-  ( E. x E. y E. z E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )  <->  ze )
Distinct variable groups:    x, y, z, w, v, u, A   
x, B, y, z, w, v, u    x, C, y, z, w, v, u    x, D, y, z, w, v, u   
x, E, y, z, w, v, u    x, F, y, z, w, v, u    ps, x    ch, y    th, z    ta, w    et, v    ze, u
Allowed substitution hints:    ph( x, y, z, w, v, u)    ps( y, z, w, v, u)    ch( x, z, w, v, u)    th( x, y, w, v, u)    ta( x, y, z, v, u)    et( x, y, z, w, u)    ze( x, y, z, w, v)

Proof of Theorem ceqsex6v
StepHypRef Expression
1 3anass 977 . . . . 5  |-  ( ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) 
<->  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  (
( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )
) )
213exbii 1600 . . . 4  |-  ( E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  (
w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )  <->  E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) ) )
3 19.42vvv 1905 . . . 4  |-  ( E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  (
( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )
)  <->  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  E. w E. v E. u
( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) ) )
42, 3bitri 183 . . 3  |-  ( E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  (
w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )  <->  ( (
x  =  A  /\  y  =  B  /\  z  =  C )  /\  E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) ) )
543exbii 1600 . 2  |-  ( E. x E. y E. z E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )  <->  E. x E. y E. z ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  E. w E. v E. u
( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) ) )
6 ceqsex6v.1 . . . 4  |-  A  e. 
_V
7 ceqsex6v.2 . . . 4  |-  B  e. 
_V
8 ceqsex6v.3 . . . 4  |-  C  e. 
_V
9 ceqsex6v.7 . . . . . 6  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
109anbi2d 461 . . . . 5  |-  ( x  =  A  ->  (
( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) 
<->  ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ps ) ) )
11103exbidv 1862 . . . 4  |-  ( x  =  A  ->  ( E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) 
<->  E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ps ) ) )
12 ceqsex6v.8 . . . . . 6  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
1312anbi2d 461 . . . . 5  |-  ( y  =  B  ->  (
( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ps ) 
<->  ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ch ) ) )
14133exbidv 1862 . . . 4  |-  ( y  =  B  ->  ( E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ps ) 
<->  E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ch ) ) )
15 ceqsex6v.9 . . . . . 6  |-  ( z  =  C  ->  ( ch 
<->  th ) )
1615anbi2d 461 . . . . 5  |-  ( z  =  C  ->  (
( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ch ) 
<->  ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  th ) ) )
17163exbidv 1862 . . . 4  |-  ( z  =  C  ->  ( E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ch ) 
<->  E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  th ) ) )
186, 7, 8, 11, 14, 17ceqsex3v 2772 . . 3  |-  ( E. x E. y E. z ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  E. w E. v E. u
( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) )  <->  E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  th )
)
19 ceqsex6v.4 . . . 4  |-  D  e. 
_V
20 ceqsex6v.5 . . . 4  |-  E  e. 
_V
21 ceqsex6v.6 . . . 4  |-  F  e. 
_V
22 ceqsex6v.10 . . . 4  |-  ( w  =  D  ->  ( th 
<->  ta ) )
23 ceqsex6v.11 . . . 4  |-  ( v  =  E  ->  ( ta 
<->  et ) )
24 ceqsex6v.12 . . . 4  |-  ( u  =  F  ->  ( et 
<->  ze ) )
2519, 20, 21, 22, 23, 24ceqsex3v 2772 . . 3  |-  ( E. w E. v E. u ( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  th ) 
<->  ze )
2618, 25bitri 183 . 2  |-  ( E. x E. y E. z ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  E. w E. v E. u
( ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph ) )  <->  ze )
275, 26bitri 183 1  |-  ( E. x E. y E. z E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )  <->  ze )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator