Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2albidv | Unicode version |
Description: Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
2albidv.1 |
Ref | Expression |
---|---|
2albidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 | |
2 | 1 | albidv 1804 | . 2 |
3 | 2 | albidv 1804 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-17 1506 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: dff13 5713 qliftfun 6555 |
Copyright terms: Public domain | W3C validator |