| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2albidv | GIF version | ||
| Description: Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2albidv | ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | albidv 1838 | . 2 ⊢ (𝜑 → (∀𝑦𝜓 ↔ ∀𝑦𝜒)) |
| 3 | 2 | albidv 1838 | 1 ⊢ (𝜑 → (∀𝑥∀𝑦𝜓 ↔ ∀𝑥∀𝑦𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dff13 5816 qliftfun 6677 seqf1og 10615 |
| Copyright terms: Public domain | W3C validator |