ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2exbidv Unicode version

Theorem 2exbidv 1914
Description: Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
Hypothesis
Ref Expression
2albidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
2exbidv  |-  ( ph  ->  ( E. x E. y ps  <->  E. x E. y ch ) )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    ch( x, y)

Proof of Theorem 2exbidv
StepHypRef Expression
1 2albidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21exbidv 1871 . 2  |-  ( ph  ->  ( E. y ps  <->  E. y ch ) )
32exbidv 1871 1  |-  ( ph  ->  ( E. x E. y ps  <->  E. x E. y ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  3exbidv  1915  4exbidv  1916  cbvex4v  1981  ceqsex3v  2843  ceqsex4v  2844  copsexg  4330  euotd  4341  elopab  4346  elxpi  4735  relop  4872  cbvoprab3  6080  ov6g  6143  th3qlem1  6784  ltresr  8026  fisumcom2  11949  fprodcom2fi  12137
  Copyright terms: Public domain W3C validator