| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exbidv | Unicode version | ||
| Description: Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| 2albidv.1 |
|
| Ref | Expression |
|---|---|
| 2exbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 |
. . 3
| |
| 2 | 1 | exbidv 1848 |
. 2
|
| 3 | 2 | exbidv 1848 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3exbidv 1892 4exbidv 1893 cbvex4v 1958 ceqsex3v 2815 ceqsex4v 2816 copsexg 4288 euotd 4299 elopab 4304 elxpi 4691 relop 4828 cbvoprab3 6021 ov6g 6084 th3qlem1 6724 ltresr 7952 fisumcom2 11749 fprodcom2fi 11937 |
| Copyright terms: Public domain | W3C validator |