Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2exbidv | Unicode version |
Description: Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
2albidv.1 |
Ref | Expression |
---|---|
2exbidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 | |
2 | 1 | exbidv 1802 | . 2 |
3 | 2 | exbidv 1802 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wex 1469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-17 1503 ax-ial 1511 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3exbidv 1846 4exbidv 1847 cbvex4v 1907 ceqsex3v 2751 ceqsex4v 2752 copsexg 4199 euotd 4209 elopab 4213 elxpi 4595 relop 4729 cbvoprab3 5887 ov6g 5948 th3qlem1 6571 ltresr 7738 fisumcom2 11312 fprodcom2fi 11500 |
Copyright terms: Public domain | W3C validator |