ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2exbidv Unicode version

Theorem 2exbidv 1882
Description: Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
Hypothesis
Ref Expression
2albidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
2exbidv  |-  ( ph  ->  ( E. x E. y ps  <->  E. x E. y ch ) )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    ch( x, y)

Proof of Theorem 2exbidv
StepHypRef Expression
1 2albidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21exbidv 1839 . 2  |-  ( ph  ->  ( E. y ps  <->  E. y ch ) )
32exbidv 1839 1  |-  ( ph  ->  ( E. x E. y ps  <->  E. x E. y ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  3exbidv  1883  4exbidv  1884  cbvex4v  1949  ceqsex3v  2806  ceqsex4v  2807  copsexg  4277  euotd  4287  elopab  4292  elxpi  4679  relop  4816  cbvoprab3  5998  ov6g  6061  th3qlem1  6696  ltresr  7906  fisumcom2  11603  fprodcom2fi  11791
  Copyright terms: Public domain W3C validator