| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exbidv | Unicode version | ||
| Description: Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| 2albidv.1 |
|
| Ref | Expression |
|---|---|
| 2exbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 |
. . 3
| |
| 2 | 1 | exbidv 1871 |
. 2
|
| 3 | 2 | exbidv 1871 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3exbidv 1915 4exbidv 1916 cbvex4v 1981 ceqsex3v 2843 ceqsex4v 2844 copsexg 4330 euotd 4341 elopab 4346 elxpi 4735 relop 4872 cbvoprab3 6080 ov6g 6143 th3qlem1 6784 ltresr 8026 fisumcom2 11949 fprodcom2fi 12137 |
| Copyright terms: Public domain | W3C validator |