ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2exbidv Unicode version

Theorem 2exbidv 1879
Description: Formula-building rule for 2 existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.)
Hypothesis
Ref Expression
2albidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
2exbidv  |-  ( ph  ->  ( E. x E. y ps  <->  E. x E. y ch ) )
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    ch( x, y)

Proof of Theorem 2exbidv
StepHypRef Expression
1 2albidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21exbidv 1836 . 2  |-  ( ph  ->  ( E. y ps  <->  E. y ch ) )
32exbidv 1836 1  |-  ( ph  ->  ( E. x E. y ps  <->  E. x E. y ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  3exbidv  1880  4exbidv  1881  cbvex4v  1946  ceqsex3v  2802  ceqsex4v  2803  copsexg  4273  euotd  4283  elopab  4288  elxpi  4675  relop  4812  cbvoprab3  5994  ov6g  6056  th3qlem1  6691  ltresr  7899  fisumcom2  11581  fprodcom2fi  11769
  Copyright terms: Public domain W3C validator