ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftfun Unicode version

Theorem qliftfun 6704
Description: The function  F is the unique function defined by  F `  [
x ]  =  A, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
qlift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
qlift.3  |-  ( ph  ->  R  Er  X )
qlift.4  |-  ( ph  ->  X  e.  _V )
qliftfun.4  |-  ( x  =  y  ->  A  =  B )
Assertion
Ref Expression
qliftfun  |-  ( ph  ->  ( Fun  F  <->  A. x A. y ( x R y  ->  A  =  B ) ) )
Distinct variable groups:    y, A    x, B    x, y, ph    x, R, y    y, F    x, X, y    x, Y, y
Allowed substitution hints:    A( x)    B( y)    F( x)

Proof of Theorem qliftfun
StepHypRef Expression
1 qlift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
2 qlift.2 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
3 qlift.3 . . . 4  |-  ( ph  ->  R  Er  X )
4 qlift.4 . . . 4  |-  ( ph  ->  X  e.  _V )
51, 2, 3, 4qliftlem 6700 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
6 eceq1 6655 . . 3  |-  ( x  =  y  ->  [ x ] R  =  [
y ] R )
7 qliftfun.4 . . 3  |-  ( x  =  y  ->  A  =  B )
81, 5, 2, 6, 7fliftfun 5865 . 2  |-  ( ph  ->  ( Fun  F  <->  A. x  e.  X  A. y  e.  X  ( [
x ] R  =  [ y ] R  ->  A  =  B ) ) )
93adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  x R
y )  ->  R  Er  X )
10 simpr 110 . . . . . . . . . . 11  |-  ( (
ph  /\  x R
y )  ->  x R y )
119, 10ercl 6631 . . . . . . . . . 10  |-  ( (
ph  /\  x R
y )  ->  x  e.  X )
129, 10ercl2 6633 . . . . . . . . . 10  |-  ( (
ph  /\  x R
y )  ->  y  e.  X )
1311, 12jca 306 . . . . . . . . 9  |-  ( (
ph  /\  x R
y )  ->  (
x  e.  X  /\  y  e.  X )
)
1413ex 115 . . . . . . . 8  |-  ( ph  ->  ( x R y  ->  ( x  e.  X  /\  y  e.  X ) ) )
1514pm4.71rd 394 . . . . . . 7  |-  ( ph  ->  ( x R y  <-> 
( ( x  e.  X  /\  y  e.  X )  /\  x R y ) ) )
163adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  Er  X )
17 simprl 529 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  x  e.  X )
1816, 17erth 6666 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x R y  <->  [ x ] R  =  [ y ] R
) )
1918pm5.32da 452 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  X  /\  y  e.  X )  /\  x R y )  <->  ( (
x  e.  X  /\  y  e.  X )  /\  [ x ] R  =  [ y ] R
) ) )
2015, 19bitrd 188 . . . . . 6  |-  ( ph  ->  ( x R y  <-> 
( ( x  e.  X  /\  y  e.  X )  /\  [
x ] R  =  [ y ] R
) ) )
2120imbi1d 231 . . . . 5  |-  ( ph  ->  ( ( x R y  ->  A  =  B )  <->  ( (
( x  e.  X  /\  y  e.  X
)  /\  [ x ] R  =  [
y ] R )  ->  A  =  B ) ) )
22 impexp 263 . . . . 5  |-  ( ( ( ( x  e.  X  /\  y  e.  X )  /\  [
x ] R  =  [ y ] R
)  ->  A  =  B )  <->  ( (
x  e.  X  /\  y  e.  X )  ->  ( [ x ] R  =  [ y ] R  ->  A  =  B ) ) )
2321, 22bitrdi 196 . . . 4  |-  ( ph  ->  ( ( x R y  ->  A  =  B )  <->  ( (
x  e.  X  /\  y  e.  X )  ->  ( [ x ] R  =  [ y ] R  ->  A  =  B ) ) ) )
24232albidv 1890 . . 3  |-  ( ph  ->  ( A. x A. y ( x R y  ->  A  =  B )  <->  A. x A. y ( ( x  e.  X  /\  y  e.  X )  ->  ( [ x ] R  =  [ y ] R  ->  A  =  B ) ) ) )
25 r2al 2525 . . 3  |-  ( A. x  e.  X  A. y  e.  X  ( [ x ] R  =  [ y ] R  ->  A  =  B )  <->  A. x A. y ( ( x  e.  X  /\  y  e.  X
)  ->  ( [
x ] R  =  [ y ] R  ->  A  =  B ) ) )
2624, 25bitr4di 198 . 2  |-  ( ph  ->  ( A. x A. y ( x R y  ->  A  =  B )  <->  A. x  e.  X  A. y  e.  X  ( [
x ] R  =  [ y ] R  ->  A  =  B ) ) )
278, 26bitr4d 191 1  |-  ( ph  ->  ( Fun  F  <->  A. x A. y ( x R y  ->  A  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772   <.cop 3636   class class class wbr 4044    |-> cmpt 4105   ran crn 4676   Fun wfun 5265    Er wer 6617   [cec 6618   /.cqs 6619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-er 6620  df-ec 6622  df-qs 6626
This theorem is referenced by:  qliftfund  6705  qliftfuns  6706
  Copyright terms: Public domain W3C validator