ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftfun Unicode version

Theorem qliftfun 6583
Description: The function  F is the unique function defined by  F `  [
x ]  =  A, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
qlift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
qlift.3  |-  ( ph  ->  R  Er  X )
qlift.4  |-  ( ph  ->  X  e.  _V )
qliftfun.4  |-  ( x  =  y  ->  A  =  B )
Assertion
Ref Expression
qliftfun  |-  ( ph  ->  ( Fun  F  <->  A. x A. y ( x R y  ->  A  =  B ) ) )
Distinct variable groups:    y, A    x, B    x, y, ph    x, R, y    y, F    x, X, y    x, Y, y
Allowed substitution hints:    A( x)    B( y)    F( x)

Proof of Theorem qliftfun
StepHypRef Expression
1 qlift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
2 qlift.2 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
3 qlift.3 . . . 4  |-  ( ph  ->  R  Er  X )
4 qlift.4 . . . 4  |-  ( ph  ->  X  e.  _V )
51, 2, 3, 4qliftlem 6579 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
6 eceq1 6536 . . 3  |-  ( x  =  y  ->  [ x ] R  =  [
y ] R )
7 qliftfun.4 . . 3  |-  ( x  =  y  ->  A  =  B )
81, 5, 2, 6, 7fliftfun 5764 . 2  |-  ( ph  ->  ( Fun  F  <->  A. x  e.  X  A. y  e.  X  ( [
x ] R  =  [ y ] R  ->  A  =  B ) ) )
93adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  x R
y )  ->  R  Er  X )
10 simpr 109 . . . . . . . . . . 11  |-  ( (
ph  /\  x R
y )  ->  x R y )
119, 10ercl 6512 . . . . . . . . . 10  |-  ( (
ph  /\  x R
y )  ->  x  e.  X )
129, 10ercl2 6514 . . . . . . . . . 10  |-  ( (
ph  /\  x R
y )  ->  y  e.  X )
1311, 12jca 304 . . . . . . . . 9  |-  ( (
ph  /\  x R
y )  ->  (
x  e.  X  /\  y  e.  X )
)
1413ex 114 . . . . . . . 8  |-  ( ph  ->  ( x R y  ->  ( x  e.  X  /\  y  e.  X ) ) )
1514pm4.71rd 392 . . . . . . 7  |-  ( ph  ->  ( x R y  <-> 
( ( x  e.  X  /\  y  e.  X )  /\  x R y ) ) )
163adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  Er  X )
17 simprl 521 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  x  e.  X )
1816, 17erth 6545 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x R y  <->  [ x ] R  =  [ y ] R
) )
1918pm5.32da 448 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  X  /\  y  e.  X )  /\  x R y )  <->  ( (
x  e.  X  /\  y  e.  X )  /\  [ x ] R  =  [ y ] R
) ) )
2015, 19bitrd 187 . . . . . 6  |-  ( ph  ->  ( x R y  <-> 
( ( x  e.  X  /\  y  e.  X )  /\  [
x ] R  =  [ y ] R
) ) )
2120imbi1d 230 . . . . 5  |-  ( ph  ->  ( ( x R y  ->  A  =  B )  <->  ( (
( x  e.  X  /\  y  e.  X
)  /\  [ x ] R  =  [
y ] R )  ->  A  =  B ) ) )
22 impexp 261 . . . . 5  |-  ( ( ( ( x  e.  X  /\  y  e.  X )  /\  [
x ] R  =  [ y ] R
)  ->  A  =  B )  <->  ( (
x  e.  X  /\  y  e.  X )  ->  ( [ x ] R  =  [ y ] R  ->  A  =  B ) ) )
2321, 22bitrdi 195 . . . 4  |-  ( ph  ->  ( ( x R y  ->  A  =  B )  <->  ( (
x  e.  X  /\  y  e.  X )  ->  ( [ x ] R  =  [ y ] R  ->  A  =  B ) ) ) )
24232albidv 1855 . . 3  |-  ( ph  ->  ( A. x A. y ( x R y  ->  A  =  B )  <->  A. x A. y ( ( x  e.  X  /\  y  e.  X )  ->  ( [ x ] R  =  [ y ] R  ->  A  =  B ) ) ) )
25 r2al 2485 . . 3  |-  ( A. x  e.  X  A. y  e.  X  ( [ x ] R  =  [ y ] R  ->  A  =  B )  <->  A. x A. y ( ( x  e.  X  /\  y  e.  X
)  ->  ( [
x ] R  =  [ y ] R  ->  A  =  B ) ) )
2624, 25bitr4di 197 . 2  |-  ( ph  ->  ( A. x A. y ( x R y  ->  A  =  B )  <->  A. x  e.  X  A. y  e.  X  ( [
x ] R  =  [ y ] R  ->  A  =  B ) ) )
278, 26bitr4d 190 1  |-  ( ph  ->  ( Fun  F  <->  A. x A. y ( x R y  ->  A  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343    e. wcel 2136   A.wral 2444   _Vcvv 2726   <.cop 3579   class class class wbr 3982    |-> cmpt 4043   ran crn 4605   Fun wfun 5182    Er wer 6498   [cec 6499   /.cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-er 6501  df-ec 6503  df-qs 6507
This theorem is referenced by:  qliftfund  6584  qliftfuns  6585
  Copyright terms: Public domain W3C validator