Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qliftfun | Unicode version |
Description: The function is the unique function defined by , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | |
qlift.2 | |
qlift.3 | |
qlift.4 | |
qliftfun.4 |
Ref | Expression |
---|---|
qliftfun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . . 3 | |
2 | qlift.2 | . . . 4 | |
3 | qlift.3 | . . . 4 | |
4 | qlift.4 | . . . 4 | |
5 | 1, 2, 3, 4 | qliftlem 6551 | . . 3 |
6 | eceq1 6508 | . . 3 | |
7 | qliftfun.4 | . . 3 | |
8 | 1, 5, 2, 6, 7 | fliftfun 5741 | . 2 |
9 | 3 | adantr 274 | . . . . . . . . . . 11 |
10 | simpr 109 | . . . . . . . . . . 11 | |
11 | 9, 10 | ercl 6484 | . . . . . . . . . 10 |
12 | 9, 10 | ercl2 6486 | . . . . . . . . . 10 |
13 | 11, 12 | jca 304 | . . . . . . . . 9 |
14 | 13 | ex 114 | . . . . . . . 8 |
15 | 14 | pm4.71rd 392 | . . . . . . 7 |
16 | 3 | adantr 274 | . . . . . . . . 9 |
17 | simprl 521 | . . . . . . . . 9 | |
18 | 16, 17 | erth 6517 | . . . . . . . 8 |
19 | 18 | pm5.32da 448 | . . . . . . 7 |
20 | 15, 19 | bitrd 187 | . . . . . 6 |
21 | 20 | imbi1d 230 | . . . . 5 |
22 | impexp 261 | . . . . 5 | |
23 | 21, 22 | bitrdi 195 | . . . 4 |
24 | 23 | 2albidv 1847 | . . 3 |
25 | r2al 2476 | . . 3 | |
26 | 24, 25 | bitr4di 197 | . 2 |
27 | 8, 26 | bitr4d 190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1333 wceq 1335 wcel 2128 wral 2435 cvv 2712 cop 3563 class class class wbr 3965 cmpt 4025 crn 4584 wfun 5161 wer 6470 cec 6471 cqs 6472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-er 6473 df-ec 6475 df-qs 6479 |
This theorem is referenced by: qliftfund 6556 qliftfuns 6557 |
Copyright terms: Public domain | W3C validator |