| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qliftfun | Unicode version | ||
| Description: The function |
| Ref | Expression |
|---|---|
| qlift.1 |
|
| qlift.2 |
|
| qlift.3 |
|
| qlift.4 |
|
| qliftfun.4 |
|
| Ref | Expression |
|---|---|
| qliftfun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 |
. . 3
| |
| 2 | qlift.2 |
. . . 4
| |
| 3 | qlift.3 |
. . . 4
| |
| 4 | qlift.4 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | qliftlem 6723 |
. . 3
|
| 6 | eceq1 6678 |
. . 3
| |
| 7 | qliftfun.4 |
. . 3
| |
| 8 | 1, 5, 2, 6, 7 | fliftfun 5888 |
. 2
|
| 9 | 3 | adantr 276 |
. . . . . . . . . . 11
|
| 10 | simpr 110 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | ercl 6654 |
. . . . . . . . . 10
|
| 12 | 9, 10 | ercl2 6656 |
. . . . . . . . . 10
|
| 13 | 11, 12 | jca 306 |
. . . . . . . . 9
|
| 14 | 13 | ex 115 |
. . . . . . . 8
|
| 15 | 14 | pm4.71rd 394 |
. . . . . . 7
|
| 16 | 3 | adantr 276 |
. . . . . . . . 9
|
| 17 | simprl 529 |
. . . . . . . . 9
| |
| 18 | 16, 17 | erth 6689 |
. . . . . . . 8
|
| 19 | 18 | pm5.32da 452 |
. . . . . . 7
|
| 20 | 15, 19 | bitrd 188 |
. . . . . 6
|
| 21 | 20 | imbi1d 231 |
. . . . 5
|
| 22 | impexp 263 |
. . . . 5
| |
| 23 | 21, 22 | bitrdi 196 |
. . . 4
|
| 24 | 23 | 2albidv 1891 |
. . 3
|
| 25 | r2al 2527 |
. . 3
| |
| 26 | 24, 25 | bitr4di 198 |
. 2
|
| 27 | 8, 26 | bitr4d 191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-er 6643 df-ec 6645 df-qs 6649 |
| This theorem is referenced by: qliftfund 6728 qliftfuns 6729 |
| Copyright terms: Public domain | W3C validator |