![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > a16nf | Unicode version |
Description: If there is only one
element in the universe, then everything satisfies
![]() |
Ref | Expression |
---|---|
a16nf |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 1678 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | a16g 1816 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nfd 1484 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 |
This theorem depends on definitions: df-bi 116 df-nf 1418 df-sb 1717 |
This theorem is referenced by: nfsbxy 1891 nfsbxyt 1892 dvelimor 1967 |
Copyright terms: Public domain | W3C validator |