ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff13 Unicode version

Theorem dff13 5789
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
dff13  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
Distinct variable groups:    x, y, A   
x, F, y
Allowed substitution hints:    B( x, y)

Proof of Theorem dff13
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dff12 5439 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. z E* x  x F z ) )
2 ffn 5384 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
3 vex 2755 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
4 vex 2755 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
53, 4breldm 4849 . . . . . . . . . . . . . 14  |-  ( x F z  ->  x  e.  dom  F )
6 fndm 5334 . . . . . . . . . . . . . . 15  |-  ( F  Fn  A  ->  dom  F  =  A )
76eleq2d 2259 . . . . . . . . . . . . . 14  |-  ( F  Fn  A  ->  (
x  e.  dom  F  <->  x  e.  A ) )
85, 7imbitrid 154 . . . . . . . . . . . . 13  |-  ( F  Fn  A  ->  (
x F z  ->  x  e.  A )
)
9 vex 2755 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
109, 4breldm 4849 . . . . . . . . . . . . . 14  |-  ( y F z  ->  y  e.  dom  F )
116eleq2d 2259 . . . . . . . . . . . . . 14  |-  ( F  Fn  A  ->  (
y  e.  dom  F  <->  y  e.  A ) )
1210, 11imbitrid 154 . . . . . . . . . . . . 13  |-  ( F  Fn  A  ->  (
y F z  -> 
y  e.  A ) )
138, 12anim12d 335 . . . . . . . . . . . 12  |-  ( F  Fn  A  ->  (
( x F z  /\  y F z )  ->  ( x  e.  A  /\  y  e.  A ) ) )
1413pm4.71rd 394 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  (
( x F z  /\  y F z )  <->  ( ( x  e.  A  /\  y  e.  A )  /\  (
x F z  /\  y F z ) ) ) )
15 eqcom 2191 . . . . . . . . . . . . . . 15  |-  ( z  =  ( F `  x )  <->  ( F `  x )  =  z )
16 fnbrfvb 5576 . . . . . . . . . . . . . . 15  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  z  <-> 
x F z ) )
1715, 16bitrid 192 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( z  =  ( F `  x )  <-> 
x F z ) )
18 eqcom 2191 . . . . . . . . . . . . . . 15  |-  ( z  =  ( F `  y )  <->  ( F `  y )  =  z )
19 fnbrfvb 5576 . . . . . . . . . . . . . . 15  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( ( F `  y )  =  z  <-> 
y F z ) )
2018, 19bitrid 192 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( z  =  ( F `  y )  <-> 
y F z ) )
2117, 20bi2anan9 606 . . . . . . . . . . . . 13  |-  ( ( ( F  Fn  A  /\  x  e.  A
)  /\  ( F  Fn  A  /\  y  e.  A ) )  -> 
( ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) )  <->  ( x F z  /\  y F z ) ) )
2221anandis 592 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  <->  ( x F z  /\  y F z ) ) )
2322pm5.32da 452 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  (
( ( x  e.  A  /\  y  e.  A )  /\  (
z  =  ( F `
 x )  /\  z  =  ( F `  y ) ) )  <-> 
( ( x  e.  A  /\  y  e.  A )  /\  (
x F z  /\  y F z ) ) ) )
2414, 23bitr4d 191 . . . . . . . . . 10  |-  ( F  Fn  A  ->  (
( x F z  /\  y F z )  <->  ( ( x  e.  A  /\  y  e.  A )  /\  (
z  =  ( F `
 x )  /\  z  =  ( F `  y ) ) ) ) )
2524imbi1d 231 . . . . . . . . 9  |-  ( F  Fn  A  ->  (
( ( x F z  /\  y F z )  ->  x  =  y )  <->  ( (
( x  e.  A  /\  y  e.  A
)  /\  ( z  =  ( F `  x )  /\  z  =  ( F `  y ) ) )  ->  x  =  y ) ) )
26 impexp 263 . . . . . . . . 9  |-  ( ( ( ( x  e.  A  /\  y  e.  A )  /\  (
z  =  ( F `
 x )  /\  z  =  ( F `  y ) ) )  ->  x  =  y )  <->  ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) ) )
2725, 26bitrdi 196 . . . . . . . 8  |-  ( F  Fn  A  ->  (
( ( x F z  /\  y F z )  ->  x  =  y )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  ( ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) )  ->  x  =  y ) ) ) )
2827albidv 1835 . . . . . . 7  |-  ( F  Fn  A  ->  ( A. z ( ( x F z  /\  y F z )  ->  x  =  y )  <->  A. z ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) ) ) )
29 19.21v 1884 . . . . . . . 8  |-  ( A. z ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  A. z ( ( z  =  ( F `
 x )  /\  z  =  ( F `  y ) )  ->  x  =  y )
) )
30 19.23v 1894 . . . . . . . . . . 11  |-  ( A. z ( ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )  <->  ( E. z ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )
)
31 funfvex 5551 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
3231funfni 5335 . . . . . . . . . . . . 13  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
33 eqvincg 2876 . . . . . . . . . . . . 13  |-  ( ( F `  x )  e.  _V  ->  (
( F `  x
)  =  ( F `
 y )  <->  E. z
( z  =  ( F `  x )  /\  z  =  ( F `  y ) ) ) )
3432, 33syl 14 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  ( F `  y )  <->  E. z ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) ) ) )
3534imbi1d 231 . . . . . . . . . . 11  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y )  <->  ( E. z ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) )  ->  x  =  y ) ) )
3630, 35bitr4id 199 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( A. z ( ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )  <->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
3736adantrr 479 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( A. z ( ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )  <->  ( ( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
3837pm5.74da 443 . . . . . . . 8  |-  ( F  Fn  A  ->  (
( ( x  e.  A  /\  y  e.  A )  ->  A. z
( ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) )  ->  x  =  y ) )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
3929, 38bitrid 192 . . . . . . 7  |-  ( F  Fn  A  ->  ( A. z ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
4028, 39bitrd 188 . . . . . 6  |-  ( F  Fn  A  ->  ( A. z ( ( x F z  /\  y F z )  ->  x  =  y )  <->  ( ( x  e.  A  /\  y  e.  A
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
41402albidv 1878 . . . . 5  |-  ( F  Fn  A  ->  ( A. x A. y A. z ( ( x F z  /\  y F z )  ->  x  =  y )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
42 breq1 4021 . . . . . . . 8  |-  ( x  =  y  ->  (
x F z  <->  y F
z ) )
4342mo4 2099 . . . . . . 7  |-  ( E* x  x F z  <->  A. x A. y ( ( x F z  /\  y F z )  ->  x  =  y ) )
4443albii 1481 . . . . . 6  |-  ( A. z E* x  x F z  <->  A. z A. x A. y ( ( x F z  /\  y F z )  ->  x  =  y )
)
45 alrot3 1496 . . . . . 6  |-  ( A. z A. x A. y
( ( x F z  /\  y F z )  ->  x  =  y )  <->  A. x A. y A. z ( ( x F z  /\  y F z )  ->  x  =  y ) )
4644, 45bitri 184 . . . . 5  |-  ( A. z E* x  x F z  <->  A. x A. y A. z ( ( x F z  /\  y F z )  ->  x  =  y )
)
47 r2al 2509 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
4841, 46, 473bitr4g 223 . . . 4  |-  ( F  Fn  A  ->  ( A. z E* x  x F z  <->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
492, 48syl 14 . . 3  |-  ( F : A --> B  -> 
( A. z E* x  x F z  <->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
5049pm5.32i 454 . 2  |-  ( ( F : A --> B  /\  A. z E* x  x F z )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
511, 50bitri 184 1  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503   E*wmo 2039    e. wcel 2160   A.wral 2468   _Vcvv 2752   class class class wbr 4018   dom cdm 4644    Fn wfn 5230   -->wf 5231   -1-1->wf1 5232   ` cfv 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fv 5243
This theorem is referenced by:  f1veqaeq  5790  dff13f  5791  dff1o6  5797  fcof1  5804  f1o2ndf1  6252  cc2lem  7294  cnref1o  9679  frec2uzf1od  10436  iseqf1olemqf1o  10523  reeff1  11739  crth  12255  eulerthlemh  12262  1arith  12398  nninfdclemf1  12502  xpsff1o  12822  ghmf1  13209  kerf1ghm  13210  ioocosf1o  14727  lgseisenlem2  14904  peano4nninf  15209  exmidsbthrlem  15224
  Copyright terms: Public domain W3C validator