ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff13 Unicode version

Theorem dff13 5892
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
dff13  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
Distinct variable groups:    x, y, A   
x, F, y
Allowed substitution hints:    B( x, y)

Proof of Theorem dff13
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dff12 5530 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. z E* x  x F z ) )
2 ffn 5473 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
3 vex 2802 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
4 vex 2802 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
53, 4breldm 4927 . . . . . . . . . . . . . 14  |-  ( x F z  ->  x  e.  dom  F )
6 fndm 5420 . . . . . . . . . . . . . . 15  |-  ( F  Fn  A  ->  dom  F  =  A )
76eleq2d 2299 . . . . . . . . . . . . . 14  |-  ( F  Fn  A  ->  (
x  e.  dom  F  <->  x  e.  A ) )
85, 7imbitrid 154 . . . . . . . . . . . . 13  |-  ( F  Fn  A  ->  (
x F z  ->  x  e.  A )
)
9 vex 2802 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
109, 4breldm 4927 . . . . . . . . . . . . . 14  |-  ( y F z  ->  y  e.  dom  F )
116eleq2d 2299 . . . . . . . . . . . . . 14  |-  ( F  Fn  A  ->  (
y  e.  dom  F  <->  y  e.  A ) )
1210, 11imbitrid 154 . . . . . . . . . . . . 13  |-  ( F  Fn  A  ->  (
y F z  -> 
y  e.  A ) )
138, 12anim12d 335 . . . . . . . . . . . 12  |-  ( F  Fn  A  ->  (
( x F z  /\  y F z )  ->  ( x  e.  A  /\  y  e.  A ) ) )
1413pm4.71rd 394 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  (
( x F z  /\  y F z )  <->  ( ( x  e.  A  /\  y  e.  A )  /\  (
x F z  /\  y F z ) ) ) )
15 eqcom 2231 . . . . . . . . . . . . . . 15  |-  ( z  =  ( F `  x )  <->  ( F `  x )  =  z )
16 fnbrfvb 5672 . . . . . . . . . . . . . . 15  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  z  <-> 
x F z ) )
1715, 16bitrid 192 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( z  =  ( F `  x )  <-> 
x F z ) )
18 eqcom 2231 . . . . . . . . . . . . . . 15  |-  ( z  =  ( F `  y )  <->  ( F `  y )  =  z )
19 fnbrfvb 5672 . . . . . . . . . . . . . . 15  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( ( F `  y )  =  z  <-> 
y F z ) )
2018, 19bitrid 192 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( z  =  ( F `  y )  <-> 
y F z ) )
2117, 20bi2anan9 608 . . . . . . . . . . . . 13  |-  ( ( ( F  Fn  A  /\  x  e.  A
)  /\  ( F  Fn  A  /\  y  e.  A ) )  -> 
( ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) )  <->  ( x F z  /\  y F z ) ) )
2221anandis 594 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  <->  ( x F z  /\  y F z ) ) )
2322pm5.32da 452 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  (
( ( x  e.  A  /\  y  e.  A )  /\  (
z  =  ( F `
 x )  /\  z  =  ( F `  y ) ) )  <-> 
( ( x  e.  A  /\  y  e.  A )  /\  (
x F z  /\  y F z ) ) ) )
2414, 23bitr4d 191 . . . . . . . . . 10  |-  ( F  Fn  A  ->  (
( x F z  /\  y F z )  <->  ( ( x  e.  A  /\  y  e.  A )  /\  (
z  =  ( F `
 x )  /\  z  =  ( F `  y ) ) ) ) )
2524imbi1d 231 . . . . . . . . 9  |-  ( F  Fn  A  ->  (
( ( x F z  /\  y F z )  ->  x  =  y )  <->  ( (
( x  e.  A  /\  y  e.  A
)  /\  ( z  =  ( F `  x )  /\  z  =  ( F `  y ) ) )  ->  x  =  y ) ) )
26 impexp 263 . . . . . . . . 9  |-  ( ( ( ( x  e.  A  /\  y  e.  A )  /\  (
z  =  ( F `
 x )  /\  z  =  ( F `  y ) ) )  ->  x  =  y )  <->  ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) ) )
2725, 26bitrdi 196 . . . . . . . 8  |-  ( F  Fn  A  ->  (
( ( x F z  /\  y F z )  ->  x  =  y )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  ( ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) )  ->  x  =  y ) ) ) )
2827albidv 1870 . . . . . . 7  |-  ( F  Fn  A  ->  ( A. z ( ( x F z  /\  y F z )  ->  x  =  y )  <->  A. z ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) ) ) )
29 19.21v 1919 . . . . . . . 8  |-  ( A. z ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  A. z ( ( z  =  ( F `
 x )  /\  z  =  ( F `  y ) )  ->  x  =  y )
) )
30 19.23v 1929 . . . . . . . . . . 11  |-  ( A. z ( ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )  <->  ( E. z ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )
)
31 funfvex 5644 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
3231funfni 5423 . . . . . . . . . . . . 13  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
33 eqvincg 2927 . . . . . . . . . . . . 13  |-  ( ( F `  x )  e.  _V  ->  (
( F `  x
)  =  ( F `
 y )  <->  E. z
( z  =  ( F `  x )  /\  z  =  ( F `  y ) ) ) )
3432, 33syl 14 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  ( F `  y )  <->  E. z ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) ) ) )
3534imbi1d 231 . . . . . . . . . . 11  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y )  <->  ( E. z ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) )  ->  x  =  y ) ) )
3630, 35bitr4id 199 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( A. z ( ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )  <->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
3736adantrr 479 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( A. z ( ( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y )  <->  ( ( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
3837pm5.74da 443 . . . . . . . 8  |-  ( F  Fn  A  ->  (
( ( x  e.  A  /\  y  e.  A )  ->  A. z
( ( z  =  ( F `  x
)  /\  z  =  ( F `  y ) )  ->  x  =  y ) )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
3929, 38bitrid 192 . . . . . . 7  |-  ( F  Fn  A  ->  ( A. z ( ( x  e.  A  /\  y  e.  A )  ->  (
( z  =  ( F `  x )  /\  z  =  ( F `  y ) )  ->  x  =  y ) )  <->  ( (
x  e.  A  /\  y  e.  A )  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
4028, 39bitrd 188 . . . . . 6  |-  ( F  Fn  A  ->  ( A. z ( ( x F z  /\  y F z )  ->  x  =  y )  <->  ( ( x  e.  A  /\  y  e.  A
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
41402albidv 1913 . . . . 5  |-  ( F  Fn  A  ->  ( A. x A. y A. z ( ( x F z  /\  y F z )  ->  x  =  y )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
42 breq1 4086 . . . . . . . 8  |-  ( x  =  y  ->  (
x F z  <->  y F
z ) )
4342mo4 2139 . . . . . . 7  |-  ( E* x  x F z  <->  A. x A. y ( ( x F z  /\  y F z )  ->  x  =  y ) )
4443albii 1516 . . . . . 6  |-  ( A. z E* x  x F z  <->  A. z A. x A. y ( ( x F z  /\  y F z )  ->  x  =  y )
)
45 alrot3 1531 . . . . . 6  |-  ( A. z A. x A. y
( ( x F z  /\  y F z )  ->  x  =  y )  <->  A. x A. y A. z ( ( x F z  /\  y F z )  ->  x  =  y ) )
4644, 45bitri 184 . . . . 5  |-  ( A. z E* x  x F z  <->  A. x A. y A. z ( ( x F z  /\  y F z )  ->  x  =  y )
)
47 r2al 2549 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
4841, 46, 473bitr4g 223 . . . 4  |-  ( F  Fn  A  ->  ( A. z E* x  x F z  <->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
492, 48syl 14 . . 3  |-  ( F : A --> B  -> 
( A. z E* x  x F z  <->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
5049pm5.32i 454 . 2  |-  ( ( F : A --> B  /\  A. z E* x  x F z )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
511, 50bitri 184 1  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395   E.wex 1538   E*wmo 2078    e. wcel 2200   A.wral 2508   _Vcvv 2799   class class class wbr 4083   dom cdm 4719    Fn wfn 5313   -->wf 5314   -1-1->wf1 5315   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fv 5326
This theorem is referenced by:  f1veqaeq  5893  dff13f  5894  dff1o6  5900  fcof1  5907  f1o2ndf1  6374  cc2lem  7452  cnref1o  9846  frec2uzf1od  10628  iseqf1olemqf1o  10728  reeff1  12211  crth  12746  eulerthlemh  12753  1arith  12890  nninfdclemf1  13023  xpsff1o  13382  ghmf1  13810  kerf1ghm  13811  znf1o  14615  ioocosf1o  15528  mpodvdsmulf1o  15664  gausslemma2dlem1f1o  15739  lgseisenlem2  15750  2lgslem1b  15768  peano4nninf  16372  exmidsbthrlem  16390
  Copyright terms: Public domain W3C validator