ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antr2 Unicode version

Theorem 3ad2antr2 1158
Description: Deduction adding a conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.)
Hypothesis
Ref Expression
3ad2antl.1  |-  ( (
ph  /\  ch )  ->  th )
Assertion
Ref Expression
3ad2antr2  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  ta )
)  ->  th )

Proof of Theorem 3ad2antr2
StepHypRef Expression
1 3ad2antl.1 . . 3  |-  ( (
ph  /\  ch )  ->  th )
21adantrl 475 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
323adantr3 1153 1  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  ta )
)  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  prarloclem  7463  ioc0  10219
  Copyright terms: Public domain W3C validator