ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ad2antr1 Unicode version

Theorem 3ad2antr1 1165
Description: Deduction adding a conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.)
Hypothesis
Ref Expression
3ad2antl.1  |-  ( (
ph  /\  ch )  ->  th )
Assertion
Ref Expression
3ad2antr1  |-  ( (
ph  /\  ( ch  /\ 
ps  /\  ta )
)  ->  th )

Proof of Theorem 3ad2antr1
StepHypRef Expression
1 3ad2antl.1 . . 3  |-  ( (
ph  /\  ch )  ->  th )
21adantrr 479 . 2  |-  ( (
ph  /\  ( ch  /\ 
ps ) )  ->  th )
323adantr3 1161 1  |-  ( (
ph  /\  ( ch  /\ 
ps  /\  ta )
)  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  ispod  4351  poxp  6318  fzosubel2  10324  hashdifpr  10965  grpsubadd  13420  mulgnnass  13493  mulgnn0ass  13494  issubg2m  13525  srgdilem  13731  lsssn0  14132  dvconst  15166  dvconstre  15168
  Copyright terms: Public domain W3C validator