ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ioc0 Unicode version

Theorem ioc0 10403
Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014.)
Assertion
Ref Expression
ioc0  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,] B
)  =  (/)  <->  B  <_  A ) )

Proof of Theorem ioc0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iocval 10039 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,] B )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <_  B ) } )
21eqeq1d 2213 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,] B
)  =  (/)  <->  { x  e.  RR*  |  ( A  <  x  /\  x  <_  B ) }  =  (/) ) )
3 xrltletr 9928 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  x  e.  RR*  /\  B  e. 
RR* )  ->  (
( A  <  x  /\  x  <_  B )  ->  A  <  B
) )
433com23 1211 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  ->  (
( A  <  x  /\  x  <_  B )  ->  A  <  B
) )
543expa 1205 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  RR* )  ->  ( ( A  < 
x  /\  x  <_  B )  ->  A  <  B ) )
65rexlimdva 2622 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <  x  /\  x  <_  B )  ->  A  <  B ) )
7 qbtwnxr 10398 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
8 qre 9745 . . . . . . . . . . . 12  |-  ( x  e.  QQ  ->  x  e.  RR )
98rexrd 8121 . . . . . . . . . . 11  |-  ( x  e.  QQ  ->  x  e.  RR* )
109a1i 9 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( x  e.  QQ  ->  x  e.  RR* )
)
11 xrltle 9919 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR*  /\  B  e.  RR* )  ->  (
x  <  B  ->  x  <_  B ) )
12113ad2antr2 1165 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( x  <  B  ->  x  <_  B )
)
1312anim2d 337 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( ( A  < 
x  /\  x  <  B )  ->  ( A  <  x  /\  x  <_  B ) ) )
1410, 13anim12d 335 . . . . . . . . . . . 12  |-  ( ( x  e.  RR*  /\  ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B ) )  -> 
( ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  -> 
( x  e.  RR*  /\  ( A  <  x  /\  x  <_  B ) ) ) )
1514ex 115 . . . . . . . . . . 11  |-  ( x  e.  RR*  ->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <  x  /\  x  <_  B ) ) ) ) )
169, 15syl 14 . . . . . . . . . 10  |-  ( x  e.  QQ  ->  (
( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <  x  /\  x  <_  B ) ) ) ) )
1716adantr 276 . . . . . . . . 9  |-  ( ( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( ( A  e.  RR*  /\  B  e. 
RR*  /\  A  <  B )  ->  ( (
x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e. 
RR*  /\  ( A  <  x  /\  x  <_  B ) ) ) ) )
1817pm2.43b 52 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  (
( x  e.  QQ  /\  ( A  <  x  /\  x  <  B ) )  ->  ( x  e.  RR*  /\  ( A  <  x  /\  x  <_  B ) ) ) )
1918reximdv2 2604 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( E. x  e.  QQ  ( A  <  x  /\  x  <  B )  ->  E. x  e.  RR*  ( A  <  x  /\  x  <_  B ) ) )
207, 19mpd 13 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. x  e.  RR*  ( A  < 
x  /\  x  <_  B ) )
21203expia 1207 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  e.  RR*  ( A  < 
x  /\  x  <_  B ) ) )
226, 21impbid 129 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  RR*  ( A  <  x  /\  x  <_  B )  <->  A  <  B ) )
2322notbid 668 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  E. x  e.  RR*  ( A  <  x  /\  x  <_  B )  <->  -.  A  <  B ) )
24 rabeq0 3489 . . . . 5  |-  ( { x  e.  RR*  |  ( A  <  x  /\  x  <_  B ) }  =  (/)  <->  A. x  e.  RR*  -.  ( A  <  x  /\  x  <_  B ) )
25 ralnex 2493 . . . . 5  |-  ( A. x  e.  RR*  -.  ( A  <  x  /\  x  <_  B )  <->  -.  E. x  e.  RR*  ( A  < 
x  /\  x  <_  B ) )
2624, 25bitri 184 . . . 4  |-  ( { x  e.  RR*  |  ( A  <  x  /\  x  <_  B ) }  =  (/)  <->  -.  E. x  e.  RR*  ( A  < 
x  /\  x  <_  B ) )
2726a1i 9 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( { x  e.  RR*  |  ( A  <  x  /\  x  <_  B ) }  =  (/)  <->  -.  E. x  e.  RR*  ( A  < 
x  /\  x  <_  B ) ) )
28 xrlenlt 8136 . . . 4  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <_  A  <->  -.  A  <  B ) )
2928ancoms 268 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <_  A  <->  -.  A  <  B ) )
3023, 27, 293bitr4d 220 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( { x  e.  RR*  |  ( A  <  x  /\  x  <_  B ) }  =  (/)  <->  B  <_  A ) )
312, 30bitrd 188 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,] B
)  =  (/)  <->  B  <_  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484   {crab 2487   (/)c0 3459   class class class wbr 4043  (class class class)co 5943   RR*cxr 8105    < clt 8106    <_ cle 8107   QQcq 9739   (,]cioc 10010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-ioc 10014
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator