| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adantr3 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 |
|
| Ref | Expression |
|---|---|
| 3adantr3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 997 |
. 2
| |
| 2 | 3adantr.1 |
. 2
| |
| 3 | 1, 2 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3ad2antr1 1165 3ad2antr2 1166 3adant3r3 1217 isosolem 5893 caovlem2d 6139 swrdspsleq 11120 tanaddap 12050 prdssgrpd 13247 prdsmndd 13280 mhmmnd 13452 imasrng 13718 imasring 13826 isxmet2d 14820 xmetres2 14851 comet 14971 xmetxp 14979 |
| Copyright terms: Public domain | W3C validator |