| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adantr3 | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 |
|
| Ref | Expression |
|---|---|
| 3adantr3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1018 |
. 2
| |
| 2 | 3adantr.1 |
. 2
| |
| 3 | 1, 2 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3ad2antr1 1186 3ad2antr2 1187 3adant3r3 1238 isosolem 5947 caovlem2d 6197 swrdspsleq 11194 tanaddap 12245 prdssgrpd 13443 prdsmndd 13476 mhmmnd 13648 imasrng 13914 imasring 14022 isxmet2d 15016 xmetres2 15047 comet 15167 xmetxp 15175 iswlkg 16032 |
| Copyright terms: Public domain | W3C validator |