ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adantr3 Unicode version

Theorem 3adantr3 1160
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
Hypothesis
Ref Expression
3adantr.1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
3adantr3  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  ta )
)  ->  th )

Proof of Theorem 3adantr3
StepHypRef Expression
1 3simpa 996 . 2  |-  ( ( ps  /\  ch  /\  ta )  ->  ( ps 
/\  ch ) )
2 3adantr.1 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
31, 2sylan2 286 1  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  ta )
)  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3ad2antr1  1164  3ad2antr2  1165  3adant3r3  1216  isosolem  5874  caovlem2d  6120  tanaddap  11921  prdssgrpd  13117  prdsmndd  13150  mhmmnd  13322  imasrng  13588  imasring  13696  isxmet2d  14668  xmetres2  14699  comet  14819  xmetxp  14827
  Copyright terms: Public domain W3C validator