ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubadd Unicode version

Theorem grpsubadd 13220
Description: Relationship between group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubadd.b  |-  B  =  ( Base `  G
)
grpsubadd.p  |-  .+  =  ( +g  `  G )
grpsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubadd  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  =  Z  <->  ( Z  .+  Y )  =  X ) )

Proof of Theorem grpsubadd
StepHypRef Expression
1 grpsubadd.b . . . . . . 7  |-  B  =  ( Base `  G
)
2 grpsubadd.p . . . . . . 7  |-  .+  =  ( +g  `  G )
3 eqid 2196 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
4 grpsubadd.m . . . . . . 7  |-  .-  =  ( -g `  G )
51, 2, 3, 4grpsubval 13178 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X 
.+  ( ( invg `  G ) `
 Y ) ) )
653adant3 1019 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( X  .-  Y
)  =  ( X 
.+  ( ( invg `  G ) `
 Y ) ) )
76adantl 277 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .-  Y )  =  ( X  .+  (
( invg `  G ) `  Y
) ) )
87eqeq1d 2205 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  =  Z  <->  ( X  .+  ( ( invg `  G ) `  Y
) )  =  Z ) )
9 simpl 109 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  G  e.  Grp )
10 simpr1 1005 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
111, 3grpinvcl 13180 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( invg `  G ) `  Y
)  e.  B )
12113ad2antr2 1165 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( invg `  G ) `  Y
)  e.  B )
131, 2grpcl 13140 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( ( invg `  G ) `  Y
)  e.  B )  ->  ( X  .+  ( ( invg `  G ) `  Y
) )  e.  B
)
149, 10, 12, 13syl3anc 1249 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .+  ( ( invg `  G ) `
 Y ) )  e.  B )
15 simpr3 1007 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
16 simpr2 1006 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
171, 2grprcan 13169 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( X  .+  ( ( invg `  G ) `  Y
) )  e.  B  /\  Z  e.  B  /\  Y  e.  B
) )  ->  (
( ( X  .+  ( ( invg `  G ) `  Y
) )  .+  Y
)  =  ( Z 
.+  Y )  <->  ( X  .+  ( ( invg `  G ) `  Y
) )  =  Z ) )
189, 14, 15, 16, 17syl13anc 1251 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  .+  ( ( invg `  G ) `  Y
) )  .+  Y
)  =  ( Z 
.+  Y )  <->  ( X  .+  ( ( invg `  G ) `  Y
) )  =  Z ) )
191, 2grpass 13141 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( ( invg `  G ) `  Y
)  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .+  ( ( invg `  G ) `
 Y ) ) 
.+  Y )  =  ( X  .+  (
( ( invg `  G ) `  Y
)  .+  Y )
) )
209, 10, 12, 16, 19syl13anc 1251 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  (
( invg `  G ) `  Y
) )  .+  Y
)  =  ( X 
.+  ( ( ( invg `  G
) `  Y )  .+  Y ) ) )
21 eqid 2196 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
221, 2, 21, 3grplinv 13182 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( ( invg `  G ) `
 Y )  .+  Y )  =  ( 0g `  G ) )
23223ad2antr2 1165 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( invg `  G ) `  Y
)  .+  Y )  =  ( 0g `  G ) )
2423oveq2d 5938 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .+  ( ( ( invg `  G
) `  Y )  .+  Y ) )  =  ( X  .+  ( 0g `  G ) ) )
251, 2, 21grprid 13164 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
26253ad2antr1 1164 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .+  ( 0g `  G ) )  =  X )
2720, 24, 263eqtrd 2233 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  (
( invg `  G ) `  Y
) )  .+  Y
)  =  X )
2827eqeq1d 2205 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  .+  ( ( invg `  G ) `  Y
) )  .+  Y
)  =  ( Z 
.+  Y )  <->  X  =  ( Z  .+  Y ) ) )
298, 18, 283bitr2d 216 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  =  Z  <->  X  =  ( Z  .+  Y ) ) )
30 eqcom 2198 . 2  |-  ( X  =  ( Z  .+  Y )  <->  ( Z  .+  Y )  =  X )
3129, 30bitrdi 196 1  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  =  Z  <->  ( Z  .+  Y )  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Grpcgrp 13132   invgcminusg 13133   -gcsg 13134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137
This theorem is referenced by:  grpsubsub4  13225  conjghm  13406  conjnmzb  13410  ablsubadd  13442  ablsubsub23  13455
  Copyright terms: Public domain W3C validator