| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrl | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| adant2.1 |
|
| Ref | Expression |
|---|---|
| adantrl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | adant2.1 |
. 2
| |
| 3 | 1, 2 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1187 3ad2antr3 1188 xordidc 1441 foco 5559 fvun1 5700 isocnv 5935 isores2 5937 f1oiso2 5951 offval 6226 xp2nd 6312 1stconst 6367 2ndconst 6368 tfrlem9 6465 nnmordi 6662 dom2lem 6923 fundmen 6959 mapen 7007 ssenen 7012 ltsonq 7585 ltexnqq 7595 genprndl 7708 genprndu 7709 ltpopr 7782 ltsopr 7783 ltexprlemm 7787 ltexprlemopl 7788 ltexprlemopu 7790 ltexprlemdisj 7793 ltexprlemfl 7796 ltexprlemfu 7798 mulcmpblnrlemg 7927 cnegexlem2 8322 muladd 8530 eqord1 8630 eqord2 8631 divadddivap 8874 ltmul12a 9007 lemul12b 9008 cju 9108 zextlt 9539 supinfneg 9790 infsupneg 9791 xrre 10016 ixxdisj 10099 iooshf 10148 icodisj 10188 iccshftr 10190 iccshftl 10192 iccdil 10194 icccntr 10196 iccf1o 10200 fzaddel 10255 fzsubel 10256 seq3caopr 10717 seqcaoprg 10718 expineg2 10770 expsubap 10809 expnbnd 10885 facndiv 10961 hashfacen 11058 ccatpfx 11233 swrdccatfn 11256 swrdccatin2 11261 fprodeq0 12128 lcmdvds 12601 hashdvds 12743 eulerthlemh 12753 pceu 12818 pcqcl 12829 infpnlem1 12882 4sqlem11 12924 mhmpropd 13499 subsubm 13516 grplcan 13595 grplmulf1o 13607 dfgrp3mlem 13631 mulgfng 13661 mulgsubcl 13673 subsubg 13734 eqger 13761 resghm 13797 conjghm 13813 subsubrng 14178 subsubrg 14209 psrgrp 14649 txlm 14953 blininf 15098 xmeter 15110 xmetresbl 15114 limcimo 15339 dvdsppwf1o 15663 fsumdvdsmul 15665 sgmmul 15670 |
| Copyright terms: Public domain | W3C validator |