![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > adantrl | Unicode version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
adant2.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
adantrl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | adant2.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan2 286 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1165 3ad2antr3 1166 xordidc 1410 foco 5488 fvun1 5624 isocnv 5855 isores2 5857 f1oiso2 5871 offval 6140 xp2nd 6221 1stconst 6276 2ndconst 6277 tfrlem9 6374 nnmordi 6571 dom2lem 6828 fundmen 6862 mapen 6904 ssenen 6909 ltsonq 7460 ltexnqq 7470 genprndl 7583 genprndu 7584 ltpopr 7657 ltsopr 7658 ltexprlemm 7662 ltexprlemopl 7663 ltexprlemopu 7665 ltexprlemdisj 7668 ltexprlemfl 7671 ltexprlemfu 7673 mulcmpblnrlemg 7802 cnegexlem2 8197 muladd 8405 eqord1 8504 eqord2 8505 divadddivap 8748 ltmul12a 8881 lemul12b 8882 cju 8982 zextlt 9412 supinfneg 9663 infsupneg 9664 xrre 9889 ixxdisj 9972 iooshf 10021 icodisj 10061 iccshftr 10063 iccshftl 10065 iccdil 10067 icccntr 10069 iccf1o 10073 fzaddel 10128 fzsubel 10129 seq3caopr 10569 seqcaoprg 10570 expineg2 10622 expsubap 10661 expnbnd 10737 facndiv 10813 hashfacen 10910 fprodeq0 11763 lcmdvds 12220 hashdvds 12362 eulerthlemh 12372 pceu 12436 pcqcl 12447 infpnlem1 12500 4sqlem11 12542 mhmpropd 13041 subsubm 13058 grplcan 13137 grplmulf1o 13149 dfgrp3mlem 13173 mulgfng 13197 mulgsubcl 13209 subsubg 13270 eqger 13297 resghm 13333 conjghm 13349 subsubrng 13713 subsubrg 13744 txlm 14458 blininf 14603 xmeter 14615 xmetresbl 14619 limcimo 14844 |
Copyright terms: Public domain | W3C validator |