| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrl | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| adant2.1 |
|
| Ref | Expression |
|---|---|
| adantrl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | adant2.1 |
. 2
| |
| 3 | 1, 2 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1166 3ad2antr3 1167 xordidc 1419 foco 5509 fvun1 5645 isocnv 5880 isores2 5882 f1oiso2 5896 offval 6166 xp2nd 6252 1stconst 6307 2ndconst 6308 tfrlem9 6405 nnmordi 6602 dom2lem 6863 fundmen 6898 mapen 6943 ssenen 6948 ltsonq 7511 ltexnqq 7521 genprndl 7634 genprndu 7635 ltpopr 7708 ltsopr 7709 ltexprlemm 7713 ltexprlemopl 7714 ltexprlemopu 7716 ltexprlemdisj 7719 ltexprlemfl 7722 ltexprlemfu 7724 mulcmpblnrlemg 7853 cnegexlem2 8248 muladd 8456 eqord1 8556 eqord2 8557 divadddivap 8800 ltmul12a 8933 lemul12b 8934 cju 9034 zextlt 9465 supinfneg 9716 infsupneg 9717 xrre 9942 ixxdisj 10025 iooshf 10074 icodisj 10114 iccshftr 10116 iccshftl 10118 iccdil 10120 icccntr 10122 iccf1o 10126 fzaddel 10181 fzsubel 10182 seq3caopr 10640 seqcaoprg 10641 expineg2 10693 expsubap 10732 expnbnd 10808 facndiv 10884 hashfacen 10981 fprodeq0 11928 lcmdvds 12401 hashdvds 12543 eulerthlemh 12553 pceu 12618 pcqcl 12629 infpnlem1 12682 4sqlem11 12724 mhmpropd 13298 subsubm 13315 grplcan 13394 grplmulf1o 13406 dfgrp3mlem 13430 mulgfng 13460 mulgsubcl 13472 subsubg 13533 eqger 13560 resghm 13596 conjghm 13612 subsubrng 13976 subsubrg 14007 psrgrp 14447 txlm 14751 blininf 14896 xmeter 14908 xmetresbl 14912 limcimo 15137 dvdsppwf1o 15461 fsumdvdsmul 15463 sgmmul 15468 |
| Copyright terms: Public domain | W3C validator |