| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrl | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| adant2.1 |
|
| Ref | Expression |
|---|---|
| adantrl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | adant2.1 |
. 2
| |
| 3 | 1, 2 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1166 3ad2antr3 1167 xordidc 1419 foco 5531 fvun1 5668 isocnv 5903 isores2 5905 f1oiso2 5919 offval 6189 xp2nd 6275 1stconst 6330 2ndconst 6331 tfrlem9 6428 nnmordi 6625 dom2lem 6886 fundmen 6922 mapen 6968 ssenen 6973 ltsonq 7546 ltexnqq 7556 genprndl 7669 genprndu 7670 ltpopr 7743 ltsopr 7744 ltexprlemm 7748 ltexprlemopl 7749 ltexprlemopu 7751 ltexprlemdisj 7754 ltexprlemfl 7757 ltexprlemfu 7759 mulcmpblnrlemg 7888 cnegexlem2 8283 muladd 8491 eqord1 8591 eqord2 8592 divadddivap 8835 ltmul12a 8968 lemul12b 8969 cju 9069 zextlt 9500 supinfneg 9751 infsupneg 9752 xrre 9977 ixxdisj 10060 iooshf 10109 icodisj 10149 iccshftr 10151 iccshftl 10153 iccdil 10155 icccntr 10157 iccf1o 10161 fzaddel 10216 fzsubel 10217 seq3caopr 10677 seqcaoprg 10678 expineg2 10730 expsubap 10769 expnbnd 10845 facndiv 10921 hashfacen 11018 ccatpfx 11192 swrdccatfn 11215 swrdccatin2 11220 fprodeq0 12043 lcmdvds 12516 hashdvds 12658 eulerthlemh 12668 pceu 12733 pcqcl 12744 infpnlem1 12797 4sqlem11 12839 mhmpropd 13413 subsubm 13430 grplcan 13509 grplmulf1o 13521 dfgrp3mlem 13545 mulgfng 13575 mulgsubcl 13587 subsubg 13648 eqger 13675 resghm 13711 conjghm 13727 subsubrng 14091 subsubrg 14122 psrgrp 14562 txlm 14866 blininf 15011 xmeter 15023 xmetresbl 15027 limcimo 15252 dvdsppwf1o 15576 fsumdvdsmul 15578 sgmmul 15583 |
| Copyright terms: Public domain | W3C validator |