Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adantrl | Unicode version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
adant2.1 |
Ref | Expression |
---|---|
adantrl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . 2 | |
2 | adant2.1 | . 2 | |
3 | 1, 2 | sylan2 286 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1163 3ad2antr3 1164 xordidc 1399 foco 5440 fvun1 5574 isocnv 5802 isores2 5804 f1oiso2 5818 offval 6080 xp2nd 6157 1stconst 6212 2ndconst 6213 tfrlem9 6310 nnmordi 6507 dom2lem 6762 fundmen 6796 mapen 6836 ssenen 6841 ltsonq 7372 ltexnqq 7382 genprndl 7495 genprndu 7496 ltpopr 7569 ltsopr 7570 ltexprlemm 7574 ltexprlemopl 7575 ltexprlemopu 7577 ltexprlemdisj 7580 ltexprlemfl 7583 ltexprlemfu 7585 mulcmpblnrlemg 7714 cnegexlem2 8107 muladd 8315 eqord1 8414 eqord2 8415 divadddivap 8657 ltmul12a 8790 lemul12b 8791 cju 8891 zextlt 9318 supinfneg 9568 infsupneg 9569 xrre 9791 ixxdisj 9874 iooshf 9923 icodisj 9963 iccshftr 9965 iccshftl 9967 iccdil 9969 icccntr 9971 iccf1o 9975 fzaddel 10029 fzsubel 10030 seq3caopr 10453 expineg2 10499 expsubap 10538 expnbnd 10613 facndiv 10687 hashfacen 10784 fprodeq0 11593 lcmdvds 12046 hashdvds 12188 eulerthlemh 12198 pceu 12262 pcqcl 12273 infpnlem1 12324 mhmpropd 12720 grplcan 12793 grplmulf1o 12805 dfgrp3mlem 12829 mulgfng 12848 mulgsubcl 12858 txlm 13350 blininf 13495 xmeter 13507 xmetresbl 13511 limcimo 13705 |
Copyright terms: Public domain | W3C validator |