| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrl | Unicode version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| adant2.1 |
|
| Ref | Expression |
|---|---|
| adantrl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | adant2.1 |
. 2
| |
| 3 | 1, 2 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1166 3ad2antr3 1167 xordidc 1419 foco 5511 fvun1 5647 isocnv 5882 isores2 5884 f1oiso2 5898 offval 6168 xp2nd 6254 1stconst 6309 2ndconst 6310 tfrlem9 6407 nnmordi 6604 dom2lem 6865 fundmen 6900 mapen 6945 ssenen 6950 ltsonq 7513 ltexnqq 7523 genprndl 7636 genprndu 7637 ltpopr 7710 ltsopr 7711 ltexprlemm 7715 ltexprlemopl 7716 ltexprlemopu 7718 ltexprlemdisj 7721 ltexprlemfl 7724 ltexprlemfu 7726 mulcmpblnrlemg 7855 cnegexlem2 8250 muladd 8458 eqord1 8558 eqord2 8559 divadddivap 8802 ltmul12a 8935 lemul12b 8936 cju 9036 zextlt 9467 supinfneg 9718 infsupneg 9719 xrre 9944 ixxdisj 10027 iooshf 10076 icodisj 10116 iccshftr 10118 iccshftl 10120 iccdil 10122 icccntr 10124 iccf1o 10128 fzaddel 10183 fzsubel 10184 seq3caopr 10642 seqcaoprg 10643 expineg2 10695 expsubap 10734 expnbnd 10810 facndiv 10886 hashfacen 10983 ccatpfx 11155 fprodeq0 11961 lcmdvds 12434 hashdvds 12576 eulerthlemh 12586 pceu 12651 pcqcl 12662 infpnlem1 12715 4sqlem11 12757 mhmpropd 13331 subsubm 13348 grplcan 13427 grplmulf1o 13439 dfgrp3mlem 13463 mulgfng 13493 mulgsubcl 13505 subsubg 13566 eqger 13593 resghm 13629 conjghm 13645 subsubrng 14009 subsubrg 14040 psrgrp 14480 txlm 14784 blininf 14929 xmeter 14941 xmetresbl 14945 limcimo 15170 dvdsppwf1o 15494 fsumdvdsmul 15496 sgmmul 15501 |
| Copyright terms: Public domain | W3C validator |