Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adantrl | Unicode version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
adant2.1 |
Ref | Expression |
---|---|
adantrl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 | |
2 | adant2.1 | . 2 | |
3 | 1, 2 | sylan2 284 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: ad2ant2l 500 ad2ant2rl 503 3ad2antr2 1153 3ad2antr3 1154 xordidc 1389 foco 5420 fvun1 5552 isocnv 5779 isores2 5781 f1oiso2 5795 offval 6057 xp2nd 6134 1stconst 6189 2ndconst 6190 tfrlem9 6287 nnmordi 6484 dom2lem 6738 fundmen 6772 mapen 6812 ssenen 6817 ltsonq 7339 ltexnqq 7349 genprndl 7462 genprndu 7463 ltpopr 7536 ltsopr 7537 ltexprlemm 7541 ltexprlemopl 7542 ltexprlemopu 7544 ltexprlemdisj 7547 ltexprlemfl 7550 ltexprlemfu 7552 mulcmpblnrlemg 7681 cnegexlem2 8074 muladd 8282 eqord1 8381 eqord2 8382 divadddivap 8623 ltmul12a 8755 lemul12b 8756 cju 8856 zextlt 9283 supinfneg 9533 infsupneg 9534 xrre 9756 ixxdisj 9839 iooshf 9888 icodisj 9928 iccshftr 9930 iccshftl 9932 iccdil 9934 icccntr 9936 iccf1o 9940 fzaddel 9994 fzsubel 9995 seq3caopr 10418 expineg2 10464 expsubap 10503 expnbnd 10578 facndiv 10652 hashfacen 10749 fprodeq0 11558 lcmdvds 12011 hashdvds 12153 eulerthlemh 12163 pceu 12227 pcqcl 12238 infpnlem1 12289 txlm 12919 blininf 13064 xmeter 13076 xmetresbl 13080 limcimo 13274 |
Copyright terms: Public domain | W3C validator |