Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adantrl | Unicode version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
adant2.1 |
Ref | Expression |
---|---|
adantrl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 | |
2 | adant2.1 | . 2 | |
3 | 1, 2 | sylan2 284 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: ad2ant2l 505 ad2ant2rl 508 3ad2antr2 1158 3ad2antr3 1159 xordidc 1394 foco 5430 fvun1 5562 isocnv 5790 isores2 5792 f1oiso2 5806 offval 6068 xp2nd 6145 1stconst 6200 2ndconst 6201 tfrlem9 6298 nnmordi 6495 dom2lem 6750 fundmen 6784 mapen 6824 ssenen 6829 ltsonq 7360 ltexnqq 7370 genprndl 7483 genprndu 7484 ltpopr 7557 ltsopr 7558 ltexprlemm 7562 ltexprlemopl 7563 ltexprlemopu 7565 ltexprlemdisj 7568 ltexprlemfl 7571 ltexprlemfu 7573 mulcmpblnrlemg 7702 cnegexlem2 8095 muladd 8303 eqord1 8402 eqord2 8403 divadddivap 8644 ltmul12a 8776 lemul12b 8777 cju 8877 zextlt 9304 supinfneg 9554 infsupneg 9555 xrre 9777 ixxdisj 9860 iooshf 9909 icodisj 9949 iccshftr 9951 iccshftl 9953 iccdil 9955 icccntr 9957 iccf1o 9961 fzaddel 10015 fzsubel 10016 seq3caopr 10439 expineg2 10485 expsubap 10524 expnbnd 10599 facndiv 10673 hashfacen 10771 fprodeq0 11580 lcmdvds 12033 hashdvds 12175 eulerthlemh 12185 pceu 12249 pcqcl 12260 infpnlem1 12311 mhmpropd 12689 grplcan 12761 txlm 13073 blininf 13218 xmeter 13230 xmetresbl 13234 limcimo 13428 |
Copyright terms: Public domain | W3C validator |