ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimp3ar Unicode version

Theorem biimp3ar 1336
Description: Infer implication from a logical equivalence. Similar to biimpar 295. (Contributed by NM, 2-Jan-2009.)
Hypothesis
Ref Expression
biimp3a.1  |-  ( (
ph  /\  ps )  ->  ( ch  <->  th )
)
Assertion
Ref Expression
biimp3ar  |-  ( (
ph  /\  ps  /\  th )  ->  ch )

Proof of Theorem biimp3ar
StepHypRef Expression
1 biimp3a.1 . . 3  |-  ( (
ph  /\  ps )  ->  ( ch  <->  th )
)
21exbiri 380 . 2  |-  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) )
323imp 1183 1  |-  ( (
ph  /\  ps  /\  th )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  rmoi  3044  brelrng  4835  ssfzo12  10159  abssubge0  11044  qredeu  12029  basgen2  12721  logbprmirr  13530  lgssq  13581  lgssq2  13582
  Copyright terms: Public domain W3C validator